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Abstract

In this paper, we derive new comparative statics results in the distribution of

portfolio payoffs using stochastic dominance. Specifically, an agent is less risk averse

than another if and only if the agent chooses a payoff that is distributed as the

other’s payoff plus a nonnegative random variable plus conditional-mean-zero noise for

all state-price-density distributions. Additionally, if either agent has non-increasing

absolute risk aversion, the non-negative random variable can be chosen to be constant.

This main result also holds in some special incomplete markets with two assets or

two-fund separation. In multiple periods, increasing risk aversion has an ambiguous

impact at a point in time, but there is a natural mixture of distributions over time

that preserves our results.
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I. Introduction

The trade-off between risk and return arises in many portfolio problems in finance.

This trade-off is more-or-less assumed in mean-variance optimization, and is also

present in the comparative statics for two-asset portfolio problems explored by Arrow

(1965) and Pratt (1964) (for a model with a riskless asset) and Kihlstrom, Romer,

and Williams (1981) and Ross (1981) (for a model without a riskless asset). However,

the trade-off is less clear in portfolio problems with many risky assets, as pointed

out by Hart (1975). Assuming a complete market with many states (and therefore

many assets), we show that a less risk-averse (in the sense of Arrow and Pratt)

agent’s portfolio payoff is distributed as the payoff for the more risk-averse agent,

plus a non-negative random variable (extra return), plus conditional-mean-zero noise

(risk). Therefore, the general complete-markets portfolio problem, which may not be

a mean-variance problem, still trades off risk and return.

If either agent has non-increasing absolute risk aversion, then the non-negative

random variable (extra return) can be chosen to be a constant. We also give a

counter-example that shows that in general, the non-negative random variable cannot

be chosen to be a constant. In this case, the less risk averse agent’s payoff can also

have a higher mean and a lower variance than the more risk averse agent’s payoff.

We further prove a converse theorem. Suppose there are two agents, such that in all

complete markets, the first agent chooses a payoff that is distributed as the second’s

payoff, plus a non-negative random variable, plus conditional-mean-zero noise. Then

the first agent is less risk averse than the other agent.

Our main result can be extended to a multiple period model. Consumption at each

date may not be ordered when risk aversion changes, due to shifts in the timing of

consumption. However, for agents with the same pure rate of time preference, there
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is a weighting of probabilities across periods that preserves the single-period result.

Our main result also extends to some special settings with incomplete markets,

for example, a two-asset world with a risk-free asset. The proof is in two parts. The

first part is the standard result: decreasing the risk aversion increases the portfolio

allocation to the asset with higher return. The second part shows that the portfolio

payoff for the higher allocation is distributed as the other payoff plus a constant plus

conditional-mean-zero noise. However, for a two-asset world without a risk-free asset,

both parts of the proof fail in general and we have a counter-example. Therefore, our

result is not true in general with incomplete markets. We further provide sufficient

conditions under which our results still hold in a two-risky-asset world using Ross’s

stronger measure of risk aversion. Each result from two assets can be re-interpreted

as applying to parallel settings with two-fund separation identifying the two funds

with the two assets.

The proofs in the paper make extensive use of results from stochastic dominance,

portfolio choice, and Arrow-Pratt and Ross (1981) risk aversion. One contribution of

the paper is to show how these concepts relate to each other. We use general versions

of the stochastic dominance results for L1 random variables1 and monotone concave

preferences, following Strassen (1965) and Ross (1971). To see why our results are

related to stochastic dominance, note that if the first agent’s payoff equals the second

agent’s payoff plus a non-negative random variable plus conditional-mean-zero noise,

this is equivalent to saying that negative the first agent’s payoff is monotone-concave

dominated by negative the second agent’s payoff.

Section II introduces the model setup and provides some preliminary results, Sec-

1We assume that the consumptions have unbounded distributions instead of compact support
(e.g., Rothschild-Stiglitz (1970)). Compact support for consumption is not a happy assumption in
finance because it is violated by most of our leading models.
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tion III derives the main results. Section IV extends the main results in a multiple-

period model. Section V discusses the case with incomplete markets. Section VI

illustrates the main results using some examples and Section VII concludes.

II. Model Setup and Some Standard Results

We want to work in a fairly general setting with complete markets and strictly concave

increasing von Neumann-Morgenstern preferences. There are two agents A and B

with von Neumann-Morgenstern utility functions UA(c) and UB(c), respectively. We

assume that UA(c) and UB(c) are of class C2, U ′A(c) > 0, U ′B(c) > 0, U ′′A(c) < 0 and

U ′′B(c) < 0. Each agent’s problem has the form:

Problem 1 Choose random consumption c̃ to

maxE[Ui(c̃)],

s.t. E[�̃c̃] = w0. (1)

In Problem 1, i = A or B indexes the agent, w0 is initial wealth (which is the same

for both agents), and �̃ > 0 is the state price density. We will assume that �̃ is in the

class P for which both agents have optimal random consumptions with finite means,

denoted c̃A and c̃B.

The first order condition is

U ′i(c̃i) = �i�̃, (2)

i.e., the marginal utility is proportional to the state price density �̃. We have

c̃i = Ii(�i�̃), (3)
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where Ii is the inverse function of U ′i(⋅). By continuity and negativity of the second

order derivative U ′′i (⋅), c̃i is a decreasing function of �̃.

Our main result will be that c̃A ∼ c̃B + z̃ + "̃, where “ ∼ ” denotes “is distributed

as,” z̃ ≥ 0, and E["̃∣cB+z] = 0.2 We firstly review and give the proofs in the Appendix

of some standard results in the form needed for the proofs of our main results.

Lemma 1 If B is weakly more risk averse than A,
(
∀c,−U ′′B(c)

U ′B(c)
≥ −U ′′A(c)

U ′A(c)

)
, then

1. for any solution to (2) (which may not satisfy the budget constraint (1)), there

exists some critical consumption level c∗ (can be ±∞) such that c̃A ≥ c̃B when

c̃B ≥ c∗, and such that c̃A ≤ c̃B when c̃B ≤ c∗;

2. assuming c̃A and c̃B have finite means, and A and B have equal initial wealths,

then E[c̃A] ≥ E[c̃B].

The first result in Lemma 1 implies that the consumptions function of the more

risk averse agent crosses that of the less risk averse agent at most once and from

above. This single-crossing result can be derived from Pratt (1964) and it can also be

found in Gollier (2001). Lemma 1 gives us a sense in which decreasing the agent’s risk

aversion takes us further from the riskless asset. In fact, we can obtain a more explicit

description (our main result) of how decreasing the agent’s risk aversion changes the

optimal portfolio choice. The description and proof are both related to monotone

concave stochastic dominance.3 The following theorem gives a distributional char-

2Throughout this paper, the letters with “tilde” denote random variables, and the corresponding
letters without “tilde” denote particular values of these variables.

3We avoid using the concept of second order stochastic dominance in this paper because it is
known that there are two different definitions. In this paper, we follow unambiguous terminology
from Ross (1971): (1) if E[V (X̃)] ≥ E[V (Ỹ )] for all nondecreasing functions, then X̃ monotone
stochastically dominates Ỹ ; (2) if E[V (X̃)] ≥ E[V (Ỹ )] for all concave functions, then X̃ concave
stochastically dominates Ỹ ; (3) if E[V (X̃)] ≥ E[V (Ỹ )] for all concave nondecreasing functions, then
X̃ monotone-concave stochastically dominates Ỹ .
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acterization of stochastic dominance for all monotone and concave functions of one

random variable over another. The form of this result is from Ross (1971) and is a

special case of a result of Strassen (1965) which generalizes a traditional result for

bounded random variables to possibly unbounded random variables with finite means.

Theorem 1 (Monotone Concave Stochastic Dominance: Strassen (1965)

and Ross (1971)) Let X̃ and Ỹ be two random variables defined in R1 with finite

means; then E[V (X̃)] ≥ E[V (Ỹ )], for all concave nondecreasing functions V (⋅), i.e.,

X̃ monotone-concave stochastically dominates Ỹ , if and only if Ỹ ∼ X̃− Z̃+ "̃, where

Z̃ ≥ 0, and E["̃∣X − Z] = 0.

Rothschild and Stiglitz (1970, 1972) popularized a similar characterization of

stochastic dominance for all concave functions (which implies equal means) that is a

special case of another result of Strassen’s.

Theorem 2 (Concave Stochastic Dominance: Strassen (1965), and Rothschild

and Stiglitz (1970, 1972)) Let X̃ and Ỹ be two random variables defined in R1 with

finite means; then E[V (X̃)] ≥ E[V (Ỹ )], for all concave functions V (⋅), i.e., X̃ concave

stochastically dominates Ỹ , if and only if Ỹ ∼ X̃ + "̃, where E["̃∣X] = 0.

III. Main Results

Suppose agent A with utility function UA and agent B with utility function UB have

identical initial wealth w0 and solve Problem 1. We have

Theorem 3 If B is weakly more risk averse than A in the sense of Arrow and Pratt(
∀c,−U ′′B(c)

U ′B(c)
≥ −U ′′A(c)

U ′A(c)

)
, then for every �̃ ∈ P, c̃A is distributed as c̃B + z̃ + "̃, where
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z̃ ≥ 0 and E["̃∣cB + z] = 0. Furthermore, if c̃A ∕= c̃B, neither z̃ nor "̃ is identically

zero.

Proof: The first step of the proof4 is to show that −c̃B monotone-concave stochas-

tically dominates −c̃A, i.e., E[V (−c̃B)] ≥ E[V (−c̃A)] for any concave nondecreasing

function V (⋅). By Lemma 1, c̃A and c̃B are monotonely related and there is a critical

value c∗ above which c̃A is weakly larger and below which c̃B is weakly larger. Let

V ′(⋅) be any selection from the subgradient correspondence ∇V (⋅), then V ′(⋅) is pos-

itive and nonincreasing and it is the derivative of V (⋅) whenever it exists. Recall that

the subgradient for concave5 V (⋅) is ∇V (x1) ≡ {s∣(∀x), V (x) ≤ V (x1) + s(x − x1)}

in the definition of Rockafellar (1970). By concavity of V (⋅), ∇V (x) is nonempty for

all x1. And if x2 > x1, then s2 ≤ s1 for all s2 ∈ ∇V (x2) and s1 ∈ ∇V (x1).

The definition of subgradient for concave V (⋅) implies that

V (x+ Δx) ≤ V (x) + V ′(x)Δx. (4)

Letting x = −c̃B and Δx = −c̃A + c̃B in (4), we have

V (−c̃A)− V (−c̃B) ≤ V ′(−c̃B)(−c̃A + c̃B). (5)

If c̃B ≥ c∗, then c̃A ≥ c̃B (by Lemma 1), and V ′(−c̃B) ≥ V ′(−c∗), while if c̃B ≤ c∗,

then c̃A ≤ c̃B and V ′(−c̃B) ≤ V ′(−c∗). In both cases, we always have (V ′(−c̃B) −
4Because the integral condition does not hold under unbounded distributions, a proof using

Lemma 1 and the intergral condition would be wrong. More specifically, we cannot get that −c̃B
monotone concave stochastically dominates −c̃A directly from

∫ c

q=−∞ [F−cA(q)− F−cB (q)] dq ≥ 0
for unbounded distributions.

5For convex V (⋅), the inequality is reversed.
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V ′(−c∗))(c̃A − c̃B) ≥ 0. Rewriting (5) and substituting in this inequality, we have

V (−c̃B)− V (−c̃A) ≥ V ′(−c̃B)(c̃A − c̃B) ≥ V ′(−c∗)(c̃A − c̃B). (6)

Since V (⋅) is nondecreasing and E[c̃A] ≥ E[c̃B] (result 2 of Lemma 1), we have

E[V (−c̃B)− V (−c̃A)] ≥ E[V ′(−c∗)(c̃A − c̃B)] = V ′(−c∗)(E[c̃A]− E[c̃B]) ≥ 0. (7)

Therefore, we have that −c̃B is preferred to −c̃A by all concave nondecreasing V (⋅),

and by Theorem 1, this says that −c̃A is distributed as −c̃B − z̃ + "̃, where z̃ ≥ 0

and E["̃∣ − cB − z] = 0. This is exactly the same as saying that c̃A is distributed as

c̃B + z̃ + (−"̃), where z̃ ≥ 0 and E[−"̃∣cB + z] = 0. Relabel −"̃ as "̃, and we have

proven the first sentence of the theorem.

To prove the second sentence of the theorem, note that because c̃A and c̃B are

monotonely related, c̃A is distributed the same as c̃B only if c̃A = c̃B. Therefore,

if c̃A ∕= c̃B, one or the other of z̃ or "̃ is not identically zero. Now, if z̃ is identi-

cally zero, then "̃ must not be identically zero, and c̃A is distributed as c̃B + "̃, by

Jensen’s inequality, we have E[UA(c̃A)] = E[UA(c̃B + "̃)] = E[E[UA(c̃B + "̃)∣c̃B]] <

E[UA(E[c̃B∣c̃B] + E["̃∣c̃B])] = E[UA(c̃B)], which contradicts the optimality of c̃A for

agent A. If "̃ is identically zero, then z̃ must not be, and c̃A is distributed as c̃B + z̃,

where z̃ ≥ 0 and is not identically zero. Therefore, c̃A strictly monotone stochastically

dominates c̃B, contradicting optimality of c̃B for agent B. This completes the proof

that if c̃A and c̃B do not have the same distribution, then neither "̃ nor z̃ is identically

0. Q.E.D.

We now prove a converse result of Theorem 3: if in all complete markets, one

agent chooses a portfolio whose payoff is distributed as a second agent’s payoff plus
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a nonnegative random variable plus conditional-mean-zero noise, then the first agent

is less risk averse than the second. Specifically, we have

Theorem 4 If for all �̃ ∈ P, E[c̃A] ≥ E[c̃B], then B is weakly more risk averse

than A
(
∀c,−U ′′B(c)

U ′B(c)
≥ −U ′′A(c)

U ′A(c)

)
. This implies a converse result of Theorem 3: if for

all �̃ ∈ P, c̃A is distributed as c̃B + z̃ + "̃, where z̃ ≥ 0 and E["̃∣cB + z] = 0, then B

is weakly more risk averse than A.

We prove this theorem by contradiction. If B is not weakly more risk averse than

A, then there exists a constant ĉ, such that −U ′′B(ĉ)

U ′B(ĉ)
< −U ′′A(ĉ)

U ′A(ĉ)
. Since UA and UB are of

the class of C2, from the continuity of −U ′′i (c)

U ′i(c)
, where i = A,B, we get that there exists

an interval RA containing ĉ, s.t., ∀c ∈ RA, −U ′′B(c)

U ′B(c)
< −U ′′A(c)

U ′A(c)
. We pick c1, c2 ∈ RA

with c1 < c2. Now from Lemma 5 in the Appendix, there exists hypothetical agents

A1 and B1, so that UA1 agrees with UA and UB1 agrees with UB on [c1, c2], but A1 is

everywhere strictly more risk averse than B1 (and not just on [c1, c2]).

Fix any �B > 0 and choose �̃ to be any random variable that takes on all the

values on [
U ′B(c2)

�B
,
U ′B(c1)

�B
]. Then, the corresponding c̃B solving the first order condition

U ′B(c̃B) = �B�̃ takes on all the values on [c1, c2]. Because U ′′B < 0, the F.O.C solution

is also sufficient(expected utility exists because �̃ and UB(c̃B) are bounded), c̃B solves

the portfolio problem for utility function UB, state price density �̃ and initial wealth

w0 = E[�̃c̃B]. Since UB1 = UB on the support of c̃B, letting c̃B1 = c̃B, then c̃B1 solves

the corresponding optimization for UB1 for �B1 = �B.

We now show that there exists �A1 such that c̃A1 ≡ IA1(�A1 �̃) satisfies the budget

constraint E[�̃c̃A1 ] = w0. Due to the choice of UA1 , IA1(�A1 �̃) exists and is a bounded

random variable for all �A1 . Letting � =
U ′B(c2)

�B
and �̄ =

U ′B(c1)

�B
( so, �̃ ∈ [�, �̄]), we
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define �1 =
U ′A1

(c1)

�
and �2 =

U ′A1
(c2)

�̄
, then we have

c1 = IA1(�1�) > IA1(�1�̃) , c2 = IA1(�2�̄) < IA1(�2�̃). (8)

The inequalities follow from IA1(⋅) decreasing. From (8) and c1 ≤ c̃B ≤ c2, we have

E[�̃IA1(�1�̃)] < E[�̃c1] ≤ E[�̃c̃B] = w0, E[�̃IA1(�2�̃)] > E[�̃c2] ≥ E[�̃c̃B] = w0. (9)

Since IA1(��̃) is continuous from the assumption that UA1(⋅) is in the class of C2

and U ′′A1
< 0. By the intermediate value theorem, there exists �A1 , such that

E[�̃IA1(�A1 �̃)] = w0, i.e., c̃A1 satisfies the budget constraint for �̃ and w0.

From the second result of Lemma 6 in the Appendix, if c̃A1 ∕= c̃B1 , then we have

that c̃B1 has a wider range of support than that of c̃A1 . Let the support of A1’s

optimal consumption be [c3, c4] ⊆ [c1, c2]. From the construction of UA1 , UA1 = UA on

the support of c̃A1 . Letting c̃A = c̃A1 , then c̃A solves the corresponding optimization

for UA for �A = �A1 .

Now, since B1 is strictly less risk averse than A1, from Theorem 3, c̃B1 ∼ c̃A1 +

z̃1 + "̃1, where z̃1 ≥ 0 and E["̃1∣cA1 + z1] = 0. Furthermore, if c̃A1 ∕= c̃B1 , then neither

z̃1 nor "̃1 is identically zero. From the first result of Lemma 6 in the Appendix, if A1

is strictly more risk averse than B1, then c̃A1 ∕= c̃B1 . Thus, by Theorem 3, neither

z̃1 nor "̃1 is identically zero. Therefore, E[c̃B1 ] > E[c̃A1 ], i.e. E[c̃B] > E[c̃A], this

contradicts the assumption that, for all �̃ ∈ P , E[c̃A] ≥ E[c̃B]. This also contradicts

a stronger condition: for all �̃ ∈ P , c̃A is distributed as c̃B + z̃ + "̃, where z̃ ≥ 0 and

E["̃∣cB + z] = 0. Q.E.D.
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Theorem 3 shows that if B is weakly more risk averse than A, then c̃A is dis-

tributed as c̃B plus a risk premium plus random noise. The distributions of the

risk premium and the noise term are typically not uniquely determined. Also, it

is possible that the weakly less risk averse agent’s payoff can have a higher mean

and a lower variance than the weakly more risk averse agent’s payoff as we will see

in example VI.2. This can happen because although adding condition-mean-zero

noise always increases variance, adding the non-negative random variable decreases

variance if it is sufficiently negatively correlated with the rest (Since V ar(c̃A) =

V ar(c̃B)+V ar("̃)+V ar(z̃)+2Cov(c̃B, z̃), if Cov(c̃B, z̃) < −1
2

(V ar(z̃) + V ar("̃)) , then

V ar(c̃A) < V ar(c̃B)). This should not be too surprising, given that it is well-known

that in general variance is not a good measure of risk6 for von Neumann-Morgenstern

utility functions,7 and for general distributions in a complete market, mean-variance

preferences are hard to justify.

Our second main result says that when either of the two agents has non-increasing

absolute risk aversion, we can choose z̃ to be non-stochastic, in which case z =

E[c̃A − c̃B]. The basic idea is as follows. If either agent has non-increasing absolute

risk aversion, then we can construct a new agent A∗ whose consumption equals to

A’s consumption plus E[c̃A − c̃B]. We can therefore get the distributional results for

agent A∗ and B since A∗ is weakly less risk averse than B.

Theorem 5 If B is weakly more risk averse than A and either of the two agents

has non-increasing absolute risk aversion, then c̃A is distributed as c̃B + z + "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0.

6See, for example Hanoch and levy (1970), and the survey of Machina and Rothschild (2008).
7If von Neumann-Morgenstern utility functions are mean-variance preferences, then they have

to be quadratic utility functions, but quadratic preferences are not appealing because they are not
increasing everywhere and they have increasing risk aversion where they are increasing.
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Proof: Define the utility function UA∗(c̃) = UA(c̃ + E[c̃A − c̃B]). In the case when A

has non-increasing absolute risk aversion, A∗ is weakly less risk averse than B because

A is weakly less risk averse than B and non-increasing risk aversion of A implies that

A∗ is weakly less risk averse than A. In the case when B has non-increasing absolute

risk aversion, B∗ with utility UB∗ = UB(c̃+E[c̃A− c̃B]) is weakly less risk averse than

B and A∗ is weakly less risk averse than B∗. Therefore, in both cases, we have that

A∗ is weakly less risk averse than B.

Give agent A∗ initial wealth wA∗ = w0 −E[�̃]E[c̃A − c̃B], where w0 is the common

initial wealth of agent A and B. A∗’s problem is

max
c̃
E[UA(c̃+ E[c̃A − c̃B])],

s.t. E[�̃c̃] = wA∗ . (10)

The first order conditions are related to the optimality of c̃A for agent A. To satisfy

the budget constraints, agent A∗ will optimally hold c̃A − E[c̃A − c̃B].

By Lemma 1, c̃A−E[c̃A− c̃B] and c̃B are monotonely related and there is a critical

value c∗ above which c̃A − E[c̃A − c̃B] is weakly larger and below which c̃B is weakly

larger. This implies that

(V ′(−c̃B)− V ′(−c∗))(c̃A − E[c̃A − c̃B]− c̃B) ≥ 0, (11)

where V (⋅) is an arbitrary concave function and V ′(⋅) is any selection from the sub-

gradient correspondence ∇V (⋅). The concavity of V (⋅) implies that

V (−c̃A + E[c̃A − c̃B])− V (−c̃B) ≤ V ′(−c̃B)(−c̃A + E[c̃A − c̃B] + c̃B). (12)
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(11) and (12) imply that

V (−c̃B)− V (−c̃A + E[c̃A − c̃B]) ≥ V ′(−c∗)(c̃A − E[c̃A − c̃B]− c̃B). (13)

We have

E[V (−c̃B)− V (−c̃A + E[c̃A − c̃B])] ≥ E[V ′(−c∗)(c̃A − c̃B − E[c̃A − c̃B])] = 0. (14)

Therefore, for any concave function V (⋅), we have

E[V (−c̃B)] ≥ E[V (−c̃A + E[c̃A − c̃B])]. (15)

By Theorem 2, this says that −c̃A + E[c̃A − c̃B] is distributed as −c̃B + "̃, where

E["̃∣ − cB] = 0. This is exactly the same as saying that c̃A−E[c̃A− c̃B] is distributed

as c̃B + (−"̃), where E[−"̃∣cB] = 0. Relabel −"̃ as "̃, and we have

c̃A − E[c̃A − c̃B] ∼ c̃B + "̃, i.e., c̃A ∼ c̃B + E[c̃A − c̃B] + "̃, (16)

where E["̃∣cB + z] = 0. Q.E.D.

The non-increasing absolute risk aversion condition is sufficient but not necessary.

A quadratic utility function has increasing absolute risk aversion. But, as illustrated

by example VI.1, the non-negative random variable can still be chosen to be a constant

for quadratic utility functions (which can be viewed as an implication of two-fund

separation and Theorem 7). If the non-negative random variable can be chosen to be

a constant, then we have the following Corollary:
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Corollary 1 If B is weakly more risk averse than A and either of the two agents has

non-increasing absolute risk aversion, then V ar(c̃A) ≥ V ar(c̃B).

Proof: From Theorem 5, the non-negative random variable z̃ can be chosen to be the

constant E[c̃A − c̃B]. Then we have E("̃∣c̃B) = 0, which implies that Cov("̃, c̃B) =

0. Therefore, V ar(c̃A) = V ar(c̃B) + V ar("̃) + 2Cov(c̃B, "̃) = V ar(c̃B) + V ar("̃) ≥

V ar(c̃B). Q.E.D.

IV. Extension to a Multiple-Period Model

We now examine our main results in a multiple period model. We assume that each

agent’s problem is:

Problem 2

max
c̃t

E[
T∑
t=1

DtUi(c̃t)],

s.t. E[
T∑
t=1

�̃tc̃t] = w0, (17)

where i = A or B indexes the agent, Dt is a discount factor (e.g., Dt = e−�t if the

pure rate of time discount � is constant), and �̃t is the state price density in period t.

Again, we will assume that both agents have optimal random consumptions, denoted

c̃At and c̃Bt, and both c̃At and c̃Bt have finite means. The first order condition gives

us

U ′i(c̃it) = �i
�̃t
Dt

, i = A,B,

we have

c̃it = Ii

(
�i
�̃t
Dt

)
,
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where Ii(⋅) is the inverse function of U ′i(⋅), by negativity of the second order deriva-

tives, c̃it is a decreasing function of �̃t. By similar arguments in the one period model,

we have

Lemma 2 If B is weakly more risk averse than A, then

1. there exists some critical consumption level c∗t (can be ±∞) such that c̃At ≥ c̃Bt

when c̃Bt ≥ c∗t , and such that c̃At ≤ c̃Bt when c̃Bt ≤ c∗t ;

2. if it happens that the budget shares as a function of time are the same for both

agents at some time t, i.e., E[�̃tc̃At] = E[�̃tc̃Bt], then E[c̃At] ≥ E[c̃Bt], and we

have c̃At ∼ c̃Bt + z̃t + "̃t, where z̃t ≥ 0 and E["̃t∣cBt + zt] = 0. And if c̃At ∕= c̃Bt,

then neither z̃t nor "̃t is identically zero. In particular, if the budget shares are

the same for all t, then this distributional condition holds for all t.

The proof of Lemma 2 is the same as that in the one-period model (Lemma 1, and

Theorem 3). If the Dt is not the same for both agents, or the same for the two agents

without any restriction on budget shares, then the distributional condition may not

hold in any period. For example, if the weakly more risk averse agent B spends most

of the money earlier but the weakly less risk averse agent A spends more later, then

the mean payoff could be higher in an earlier period for the weakly more risk averse

agent, i.e., E[c̃Bt] > E[c̃At].

Now, assume both agents have the same discount factor Dt and choose the period

and consumption using a mixture model: first choose t with probability �t = Dt∑T
t=1Dt

,

and then choose �̃t from its distribution. Then, we will show that, under this proba-

bility measure c̃A ∼ c̃B + z̃ + "̃.

Definition 1 Suppose the original probability space has probability measure P over

states Ω with filtration {ℱt}. We define the discrete random variable � on associated

14



probability space (Ω∗,ℱ∗, P ∗) so that P ∗(� = t) = �t ≡ Dt/(
∑T

t=1Dt). We then

define a single-period problem on a new probability space (Ω̂, ℱ̂ , P̂ ). Define the state

of nature in the product space (t, !) ∈ Ω̂ ≡ Ω∗×Ω with t and ! drawn independently.

Let ℱ̂ be the optional �-algebra, which is the completion of ℱ∗ × ℱ� . The synthetic

probability measure is the one consistent with independence generated from P̂ (f ∗, f) =

P ∗(f ∗)× P (f) for all subsets f ∗ ∈ ℱ∗ and subsets f ∈ ℱ� .

The synthetic probability measure assigns a probability measure that looks like a

mixture model, drawing time first assigning probability �t to time t, and then drawing

from �̃t using its distribution in the original problem.

Recall that under the original probability measure, each agent’s problem is given

in (17). Now we want to write down an equivalent problem, in terms of the choice

of distribution of each c̃t, but with the new synthetic probability measure. The

consumption c̃ under the new probability space over which synthetic probabilities are

defined is a function of �̃ and t; we identify c̃(�̃, t) with what used to be c̃t(�̃). To

write the objective function in terms of the synthetic probabilities, we can write

E[
T∑
t=1

DtU(c̃t)] =
T∑
t=1

DtE[U(c̃t)] =
T∑
t=1

(
T∑
s=1

Ds)�tÊ[U(c̃)∣t]

= (
T∑
s=1

Ds)
T∑
t=1

�tÊ[U(c̃)∣t] = (
T∑
s=1

Ds)Ê[U(c̃)], (18)

where Ê denotes the expectation under the synthetic probability.
∑T

s=1Ds is a posi-

tive constant, so the objective function is equivalent to maximizing Ê[U(c̃)].

Now, we can write the budget constraint in terms of the synthetic probabilities,

w0 = E[
T∑
t=1

�̃tc̃t] =
T∑
t=1

�tE[
�̃t
�t
c̃t] =

T∑
t=1

�tÊ[
�̃

�
c̃∣t] = Ê[

�̃

�
c̃]. (19)
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Then we can apply our single-period results (Theorem 3, 4 and 5) to derive that

our main results holds on a mixture model of the c̃A and c̃B over time:

Theorem 6 In a multiple-period model, assume agent A and B have the same dis-

count factor Dt and solve Problem 2, and let c̃A and c̃B be the optimal consumption

of A and B respectively under the synthetic probability measure, we have

1. if B is weakly more risk averse than A, then, c̃A ∼ c̃B+ z̃+ "̃ under the synthetic

probabilities, where z̃ ≥ 0, Ê["̃∣cB + z] = 0;

2. If for all �̃ ∈ P, Ê[c̃A] ≥ Ê[c̃B], then B is weakly more risk averse than A. This

implies a converse result of statement 1: if for all �̃ ∈ P, c̃A is distributed as

c̃B + z̃ + "̃, where z̃ ≥ 0 and Ê["̃∣cB + z] = 0, then B is weakly more risk averse

than A;

3. If B is weakly more risk averse than A and either of the two agents has non-

increasing absolute risk aversion, then c̃A is distributed as c̃B + z + "̃, where

z = Ê[c̃A − c̃B] ≥ 0 and Ê["̃∣cB + z] = 0.

Therefore, if the budget shares are not the same for both agents at each time

period t, then the distributional result may not hold period-by-period in a multiple-

period model with time-separable von Neumann-Morgenstern utility having identical

weights over time. However, Theorem 6 implies that our main results still hold

under the synthetic probabilities in a multiple-period model. This results retain the

spirit of our main results while acknowledging that changing risk aversion may cause

consumption to shift over time.
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V. Possibly Incomplete Market Case

Our result still holds in a two-asset world with a risk-free asset. For a two-asset world

without a risk-free asset, we have a counter-example to our result holding. Therefore,

our main result does not hold in general with incomplete markets. However, our result

holds in a two-risky-asset world if we make enough assumptions about asset payoffs

and the risk-aversion measure. Also, each two-asset result has a natural analog for

models with many assets and two-fund separation, since the portfolio payoffs will be

the same as in a two-asset model in which only the two funds are traded.8 Note

that while this section is intended to ask to what extent our results can be extended

to incomplete markets, the results also apply to complete markets with two-fund

separation.

First, we show that our main result still holds in a two-asset world with a risk-free

asset. The proof is in two parts. The first part is the standard result: decreasing the

risk aversion increases the portfolio allocation to the asset with higher return. The

second part shows that the portfolio payoff for the higher allocation is distributed

as the other payoff plus a constant plus conditional-mean-zero noise. To show the

second part, we use the following Lemma:

Lemma 3 1. If E[q̃] = 0 and 0 ≤ m1 ≤ m2, then m2q̃ ∼ m1q̃ + "̃, where

E["̃∣m1q] = 0.

2. Let E[�̃] be finite, E[q̃∣�] ≥ 0, and 0 ≤ m1 ≤ m2. Then �̃+m2q̃ ∼ �̃+m1q̃+z̃+"̃,

where z̃ = (m2 −m1)E[q̃∣�] ≥ 0 and E["̃∣�+m1q + z] = 0.

Proof: We prove 2, and 1 follows immediately by setting �̃ = 0 and E[q̃] = 0. Let

8See Cass and Stiglitz (1970) and Ross (1978) for characterization of two-fund separation, i.e.,
for portfolio choice to be equivalent to choice between two mutual funds of assets.
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z̃0 ≡ E[q̃∣�] and z̃ ≡ (m2−m1)z̃0. By Theorem 2, we only need to show that, for any

concave function V (⋅), E[V (�̃+m2q̃)] ≤ E[V (�̃+m1q̃+ z̃)]. Fix V (⋅) and let V ′(⋅) be

any selection from its subgradient correspondence ∇V (⋅) (so V ′(⋅) is the derivative of

V (⋅) whenever it exists). The concavity of V (⋅) and the definitions of z̃0 and z̃ imply

that

V (�̃+m2q̃)− V (�̃+m1q̃ + z̃) ≤ V ′(�̃+m1q̃ + z̃)(m2 −m1)(q̃ − z̃0). (20)

Furthermore, V ′(⋅) nonincreasing, m2 ≥ m1 ≥ 0, and the definitions of z̃0 and z̃ imply

(V ′(�̃+m1q̃ + z̃)− V ′(�̃+m2z̃0))(m2 −m1)(q̃ − z̃0) ≤ 0. (21)

From (20), (21), and the definitions of z̃0 and z̃, we get

E[V (�̃+m2q̃)]− E[V (�̃+m1q̃ + z̃)] ≤ E[V ′(�̃+m1q̃ + z̃)(m2 −m1)(q̃ − z̃0)]

≤ E[V ′(�̃+m2z̃0)(m2 −m1)(q̃ − z̃0)]

= E[E[V ′(�̃+m2z̃0)(m2 −m1)(q̃ − z̃0)∣�]] = 0.

Q.E.D.

Now, we consider the following portfolio choice problem:

Problem 3 (Possibly Incomplete Market with Two Assets) Agent i’s (i = A,B)

problem is

max
�i∈R

E[Ui(w0x̃+ �iw0ṽ)],

where w0 is the initial wealth, �i is the proportion invested in the second asset, and
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ṽ is the excess of the return on the second asset over the first asset, i.e., ṽ = ỹ − x̃,

where x̃ and ỹ are the total returns on the two assets. We assume that E[ṽ] ≥ 0, ṽ is

nonconstant, and E[ṽ] and E[x̃] are finite.

We denote agent A and B’s respective optimal investments in the risky asset with

payoff ỹ by �∗A and �∗B. The payoff for agent A is c̃A = w0x̃ + �∗Aw0ṽ and agent

B’s payoff is c̃B = w0x̃ + �∗Bw0ṽ. We maintain the utility assumptions made earlier:

U ′i(⋅) > 0 and U ′′i (⋅) < 0, so ṽ nonconstant implies that �∗A and �∗B are unique if they

exist. We have the following well-known result.

Lemma 4 Suppose x̃ is riskless (x̃ nonstochastic), if B is weakly more risk averse

than A, then the agents’ solutions to Problem 3 satisfy �∗A ≥ �∗B.

Proof: The first-order condition of A’s problem is:

E[U ′A(xw0 + �∗Aw0ṽ)w0ṽ] = 0. (22)

The analogous expression for B is '(�∗B) = 0, where

'(�∗B) ≡ E[U ′B(xw0 + �∗Bw0ṽ)w0ṽ]. (23)

Since UB(⋅) = G(UA(⋅)), where G′(⋅) > 0 and G′′(⋅) ≤ 0, we have:

'(�∗A) = E[G′(UA(xw0 + �∗Aw0ṽ))U ′A(xw0 + �∗Aw0ṽ)w0ṽ] ≤ 0. (24)

Here is the proof of the last inequality. The expectation in (24) is the same

as that in (22) except that marginal utility U ′A(⋅) is multiplied by G′(⋅), a posi-

tive decreasing function of ṽ. Therefore, (22) underweights the positive values of
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E[U ′A(xw0 + �∗Aw0ṽ)w0ṽ], which obtain for ṽ > 0 relative to the negative values of

E[U ′A(xw0 + �∗Aw0ṽ)w0ṽ], which obtain for ṽ < 0. Because the expectation in (22) is

zero, the expectation in (24) must be a non-positive number. Finally, the concavity

of UB(⋅) implies that '(⋅) is decreasing, and therefore from (23) and (24), we must

have �∗A ≥ �∗B. Q.E.D.

Lemma 4 implies that decreasing the risk aversion increases the portfolio allocation

to the asset with higher return. Now, we show that our main result still holds in a

two-asset world with a risk-free asset. We have

Theorem 7 (Two-asset World with a Riskless Asset) Consider the two-asset world

with a riskless asset (x̃ nonstochastic) of Problem 3, if B is weakly more risk averse

than A in the sense of Arrow and Pratt, then c̃A is distributed as c̃B + z + "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0.

Proof: When the first asset in Problem 3 is riskless, then we have c̃A − E[c̃A] =

�∗Aw0(ỹ − E[ỹ]) and c̃B − E[c̃B] = �∗Bw0(ỹ − E[ỹ]). From Lemma 4, �∗A ≥ �∗B. Let

q̃ ≡ ỹ − E[ỹ], m1 ≡ �∗Bw0 and m2 ≡ �∗Aw0 in the first part of Lemma 3, we have

c̃A−E[c̃A] ∼ c̃B −E[c̃B] + "̃, which implies that c̃A is distributed as c̃B + z+ "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0. Q.E.D.

Theorem 7 generalizes in obvious ways to settings with two-fund separation since

optimal consumption is the same as it would be with ordering the two funds as

assets. The main requirement is that one of the funds can be chosen to be riskless,

for example, in a mean-variance world with a riskless asset and normal returns for

risky assets.9 In this example, if B is weakly more risk averse than A, Theorem 7

9This example is a special case of two-fund separation in mean-variance worlds or the separating
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tells us that c̃A ∼ c̃B + z + "̃, where z ≥ 0 is constant and E["̃∣cB + z] = 0. We know

that A’s optimal portfolio is further up the frontier than B′s, i.e., E[c̃A] ≥ E[c̃B] and

V ar[c̃A] ≥ V ar[c̃B]. This result is verified by noting that we can choose z = E[c̃A−c̃B],

"̃ ∼ N(0, V ar[c̃A]− V ar[c̃B]), and "̃ is drawn independently of c̃B.

Now, we examine the case with two risky assets in Problem 3. For a two-asset

world without a riskless asset, we have a counter-example to our result holding. In

the counter-example, �∗A > �∗B, but the distributional result does not hold.

Example V.1 We assume that there are two risky assets and four states. The

probabilities for the four states are 0.2, 0.3, 0.3 and 0.2 respectively. The payoff of

x̃ is (10 8 1 1)T and the net payoff ṽ is (−1 1 1 − 1)T . Agent’s utility function is

Ui(w̃i) = −e−�iw̃i , where i = A,B, and w̃i is agent i’s terminal wealth. We assume

that agent B is weakly more risk averse than A with �A = 1 and �B = 1.5. The agents

solve Problem 3 with initial wealth w0 = 1.

The agents’ problems are:

max
�A

0.2e−(10−�A) + 0.3e−(8+�A) + 0.3e−(1+�A) + 0.2e−(1−�A),

and

max
�B

0.2e−1.5(10−�B) + 0.3e−1.5(8+�B) + 0.3e−1.5(1+�B) + 0.2e−1.5(1−�B).

First-order conditions give �∗A = 1
2

log
(

3+3e−7

2+2e−9

)
= 0.2, and �∗B = 1

3
log
(

3+3e−10.5

2+2e−13.5

)
=

0.135. Therefore, agent A’s portfolio payoff is (9.8 8.2 1.2 0.8)T and agent B’s portfolio

payoff is (9.865 8.135 1.135 0.865)T . If agent A’s payoff c̃A ∼ c̃B + z̃ + "̃, where

E["̃∣cB + z] = 0, then we have Pr("̃ ≥ 0∣cB + z) > 0, therefore, we have max c̃A ≥

max c̃B. However, in this example, we can see that max c̃A = 9.8 and max c̃B = 9.865,

distributions of Ross (1978).
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i.e., max c̃A < max c̃B. Contradiction! Therefore, in general, our result does not hold

in a two-asset world without a riskless asset. Q.E.D.

It is a natural question to ask whether our main result holds in a two risky asset

world if we make enough assumptions about asset payoffs. We can, if we use Ross’s

stronger measure of risk aversion (see Ross (1981)) and his payoff distributional con-

dition. We have

Theorem 8 (Two Risky Assets with Ross’s Measure) Consider the two-risky-asset

world of Problem 3 with E[ṽ∣x] ≥ 0 for all x. If B is weakly more risk averse than A

under Ross’s stronger measure of risk aversion, then c̃A is distributed as c̃B + z̃ + "̃,

where E["̃∣cB + z] = 0, and z̃ ≥ 0.

Proof: Our proof is in two parts. The first part is from Ross (1981): if agent A is

weakly less risk averse than B under Ross’s stronger measure, then �∗A ≥ �∗B. The

first order condition of A’s problem is

E[U ′A(w0x̃+ �∗Aw0ṽ)w0ṽ] = 0. (25)

The analogous expression for B is '(�∗B) = 0, where

'(�∗B) ≡ E[U ′B(w0x̃+ �∗Bw0ṽ)w0ṽ]. (26)

From Ross (1981), if B is weakly more risk averse than A under Ross’s stronger

measure, then there exists � > 0 and a concave decreasing function G(⋅), such that

UB(⋅) = �UA(⋅) +G(⋅). Therefore,

'(�∗A) = E[(�U ′A(w0x̃+ �∗Aw0ṽ) +G′(w0x̃+ �∗Aw0ṽ))w0ṽ]
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= E[G′(w0x̃+ �∗Aw0ṽ)w0ṽ] = E[E[G′(w0x̃+ �∗Aw0ṽ)w0ṽ∣x]] ≤ 0, (27)

where the last inequality is a consequence of the fact that G′(⋅) is negative and

decreasing while E[ṽ∣x] ≥ 0. The concavity of UB(⋅) implies that '(⋅) is decreasing.

Therefore, from (25) and (27), we have �∗A ≥ �∗B.

The second part shows that the portfolio payoff for the higher allocation is dis-

tributed as the other payoff plus a constant plus conditional-mean-zero noise. Let

q̃ ≡ ṽ, �̃ ≡ w0x̃, m1 ≡ �∗Bw0 and m2 ≡ �∗Aw0 in Lemma 3, part 2, we have w0x̃ +

�∗Aw0ṽ ∼ w0x̃+�∗Bw0ṽ+ z̃+ "̃, i.e., c̃A ∼ c̃B + z̃+ "̃, where z̃ = w0(�∗A−�∗B)E[ṽ∣x] ≥ 0

and E["̃∣cB + z] = 0. Q.E.D.

Theorem 8 implies that our main result holds when we use Ross’s stronger measure

of risk aversion with the assumption of E[ṽ∣x] ≥ 0. If the condition E[ṽ∣x] ≥ 0 is not

satisfied, then our main result may not hold even when we use Ross’s stronger measure

of risk aversion as we can see in the following example.

Example V.2 We assume that there are two risky assets and four states. The

probabilities for the four states are 0.3, 0.2, 0.3 and 0.2 respectively. The payoff of x̃

is (10 8 1 1)T and the net payoff ṽ is (−1 1 1 − 1)T . Agent A’s utility function is

UA(w̃A) = e6w̃A − e−w̃A , and agent B’s utility function is UB(w̃B) = w̃B − e6−1.5w̃B ,

where w̃i is the terminal wealth of agent i. The agents solve Problem 3 with initial

wealth w0 = 1. We have

U ′′B(w)

U ′′A(w)
=

2.25e6−1.5w

e−w
= 2.25e6−0.5w,

U ′B(w)

U ′A(w)
=

1 + 1.5e6−1.5w

e6 + e−w
.

Therefore, infw
U ′′B(w)

U ′′A(w)
> supw

U ′B(w)

U ′A(w)
, for any 0 ≤ w ≤ 10, which implies that agent

B is strictly more risk aversion than agent A under Ross’s stronger measure of risk
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aversion.

The Agents’ problems are:

max
�A

0.3
(
e6(10− �A)− e−(10−�A)

)
+ 0.2

(
e6(8 + �A)− e−(8+�A)

)
+0.3

(
e6(1 + �A)− e−(1+�A)

)
+ 0.2

(
e6(1− �A)− e−(1−�A)

)
,

and

max
�B

0.3
(
10− �B − e6−1.5(10−�B)

)
+ 0.2

(
8 + �B − e6−1.5(8+�B)

)
+0.3

(
1 + �B − e6−1.5(1+�B)

)
+ 0.2

(
1− �B − e6−1.5(1−�B)

)
.

From the first order condition, e2�∗A = 3+2e−7

2+3e−9 , i.e., �
∗
A = 1

2
log
(

3+2e−7

2+3e−9

)
= 0.2029,

and e3�∗B = 3e−1.5+2e−12

2e−1.5+3e−15 , i.e., �
∗
B = 1

3
log
(

3e−1.5+2e−12

2e−1.5+3e−15

)
= 0.1352. Therefore, agent A’s

portfolio payoff is (9.7971 8.2029 1.2029 0.7971)T and agent B’s portfolio payoff is

(9.8648 8.1352 1.1352 0.8648)T . If agent A’s payoff c̃A ∼ c̃B + z̃ + "̃, where E["̃∣cB +

z] = 0, then we have Pr("̃ ≥ 0∣cB + z) > 0. Therefore, we have max c̃A ≥ max c̃B.

However, in this example, we can see that max c̃A = 9.7971 and max c̃B = 9.8648,

i.e., max c̃A < max c̃B. Contradiction! Therefore, in a two-risky asset world, our main

result does not hold in general even under Ross’s stronger measure of risk aversion if

we don’t make the assumption that E[ṽ∣x] ≥ 0. Q.E.D.

An alternative to the approach following Ross (1981) is the approach of Kihlstrom,

Romer and Williams (1981) for handling random base wealth. They show that the

Arrow-Pratt measure works if we restrict attention to comparisons in which (1) at

least one of the utility functions has nonincreasing absolute risk aversion and (2)

base wealth is independent of the other gambles. Here is how their argument works.
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The independence implies that we can convert a problem with random base wealth

x to a problem with nonrandom base wealth by using the indirect utility functions

Ûi(w) ≡ E[Ui(x̃+w)], and our results for nonrandom base wealth apply directly. For

this to work, the indirect utility functions ÛA and ÛB must inherit the risk aversion

ordering from UA and UB, which as they point out, does not happen in general.

However, letting F (⋅) be the distribution function of x̃, simple calculations tell us

that provided integrals exist, we can write

− Û
′′
i (w)

Û ′i(w)
=

∫
U ′i(x̃+ w)∫

U ′i(ỹ + w)dF (ỹ + w)

(
−U

′′
i (x̃+ w)

U ′i(x̃+ w)

)
dF (x̃) (28)

For both agents, the risk aversion of the indirect utility function is therefore a weighted

average of the risk aversion of the direct utility function, but the weights are different

so the risk aversion ordering is not preserved in general (since the more risk averse

agent may have relatively higher weights from wealth regions where both agents have

small risk aversion). However, we do know that the more risk averse agents’ weights

put relatively higher weight on lower wealth levels (since i’s absolute risk aversion is

−d log(U ′i(w)/dw)), so if either agent has nonincreasing absolute risk aversion, then

the risk aversion ordering of the direct utility function is inherited by the indirect

utility function. Subject to existence of some integrals (ensured by compactness in

their paper), their results and our Theorem 7 imply that if B is weakly more risk

averse than A, at least one of UA and UB has nonincreasing absolute risk aversion,

and ṽ is independent of x̃, then our main result holds: c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0

and E["̃∣cB + z] = 0.

As we have shown that our main result does not hold in general in the traditional

type of incomplete markets where portfolio payoffs are restricted to a subspace. How-
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ever, it is an open question whether the results extend to more interesting models of

incomplete markets in which there is a reason for the incompleteness. For example, a

market that is complete over states distinguished by security returns and incomplete

over other private states (see Dybvig (1992) or Chen and Dybvig (2009)). Another

type of incompleteness comes from a nonnegative wealth constraint (which is an im-

perfect solution to information problems when investors have private information or

choices related to default), which means agents have individual incompleteness and

cannot fully hedge future non-traded wealth or else they would violate the nonnega-

tive wealth constraint (see Dybvig and Liu (2009)).

VI. Examples

In example VI.1, we illustrate our main result with specific distribution of c̃A, c̃B

and "̃. In this example, the nonnegative random variable z̃ can be chosen to be a

constant, and therefore from Corollary 1 in Section III, the variance of the less risk

averse agent’s payoff is higher.

Example VI.1 B is weakly more risk averse than A, A and B have the same

initial wealth w0 = 1 and the utility functions are as follows

UA(c̃) = −1

2
(4− c̃)2 , UB(c̃) = −1

2
(3− c̃)2 ,

where c̃ < 4 for agent A, and c̃ < 3 for agent B. We assume that the state price density

�̃ is uniformly distributed in [0, 1]. The first-order conditions give us c̃A = 4 − �A�̃,

and c̃B = 3−�B�̃. Because E[�̃] = 1
2

and E[�̃2] = 1
3
, the budget constraint E[�̃c̃i] = 1,

i = A,B, implies that �A = 3 and �B = 3
2
. Therefore, c̃A is uniformly distributed

in [1, 4] and c̃B is uniformly distributed in
[

3
2
, 3
]
. We have E[c̃A] − E[c̃B] = 1

4
. Let
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"̃ have a Bernoulli distribution drawn independently of c̃B with two equally possible

outcomes 3
4

and −3
4
. It is not difficult to see that c̃A is distributed as c̃B+ z̃+ "̃ , where

z̃ = E[c̃A]− E[c̃B] = 1
4
, and "̃ is independent of c̃B, which implies E["̃∣cB + z] = 0.

Next, in example VI.2, we show that in general z̃ may not be chosen to be a

constant. Interestingly, the variance of the weakly less risk averse agent’s payoff can

be smaller than the variance of the weakly more risk averse agent’s payoff.

Example VI.2 B is weakly more risk averse than A, A and B have the same

initial wealth w0 = 1 and the utility functions are as follows

UA(c̃) = −(8− c̃)3

3
, UB(c̃) = −(8− c̃)5

5
,

where c̃ < 8. The first-order conditions give us

U ′A(c̃A) = (8− c̃A)2 = �A�̃, U
′
B(c̃B) = (8− c̃B)4 = �B�̃. (29)

Therefore,

c̃A = 8−
√
�A�̃, c̃B = 8− (�B�̃)1/4. (30)

From (30), we get

c̃A = 8−
√
�A
�B

(8− c̃B)2. (31)

We have: c̃A ≥ c̃B iff c̃B ≥ 8−
√

�B
�A

. From Theorem 3, we know that c̃A ∼ c̃B + z̃+ "̃,

where z̃ ≥ 0 and E["̃∣cB +z] = 0. To find an example that the variance of the less risk

averse agent’s payoff can be smaller, we assume that �̃ has a discrete distribution, i.e.,

�1 = " with probability 1
2
, �2 = 1

4
with probability 1

4
, and �3 = 1

2
with probability 1

4
.

If " is very tiny (close to zero), then from (30) and the budget constraint E[�̃c̃A] = 1.
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It is not difficult to compute �A ≈ 17.5, �B ≈ 125.8, c̃A ≈ (8 5.91 5.045) and c̃B ≈

(8 5.632 5.184). Therefore, E[c̃A] ≈ 6.73, E[c̃B] ≈ 6.70, and V ar(c̃A) ≈ 1.684 <

V ar(c̃B) ≈ 1.704, i.e., the variance of the weakly more risk averse agent’s payoff is

higher. As noted in Section III, we know that if the non-negative random variable

z̃ can be chosen to be a constant, then V ar(c̃A) = V ar(c̃B) + V ar("̃) ≥ V ar(c̃B).

Therefore, in this example, z̃ cannot be chosen to be a constant.

The next example shows that if the utility functions are not strictly concave, then

our main result does not hold.

Example VI.3 B is weakly more risk averse than A, A and B have the same initial

wealth w0 = 1 and the utility functions are UA(c̃) = UB(c̃) = c̃. We assume there are

two states with �1 = 1
2

with probability 1
3
, and �2 = 1

2
with probability 2

3
. It is not

difficult to see that c̃A = (0, 3) and c̃B = (4, 1) is an optimal consumption for agent

A and B for �A = �B = 2. We have E[c̃A] = E[c̃B] = 2 and V ar[c̃A] = V ar[c̃B] = 2.

If c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0 and E["̃∣cB + z] = 0, then z̃ = 0 and "̃ = 0, we

get c̃A ∼ c̃B. Contradiction! So, we cannot have c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0 and

E["̃∣cB + z] = 0.

Example VI.3 is degenerate with constant �̃ and linear utility. It is not difficult to

construct a more general example (Example VI.4), where �̃ is random and the utility

function has two straight segments. The optimal portfolio is not unique on these two

straight segments taken together and therefore our payoff distributional result may

not hold.

Example VI.4 B is weakly more risk averse than A, A and B have the same
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initial wealth w0 = 2 and the utility functions are as follows

UA(c̃) = UB(c̃) =

⎧⎨⎩

−(c̃− 1)4 + c̃ c̃ < 1

c̃ 1 ≤ c̃ ≤ 2

1
256

(c̃4 − 16c̃3 + 72c̃2 + 128c̃+ 80) 2 < c̃ < 6

1
2
c̃+ 2 6 ≤ c̃ ≤ 14

1
2
e−(c̃−14) − 2e−(c̃−14)/2 + 9 c̃ ≥ 14.

In this example, the utility function has two straight segments and the optimal

portfolio is not unique on these two straight segments taken together. We assume

that �1 = 1
2

with probability 1
2

and �2 = 1
4

with probability 1
2
. Then, it is not difficult

to see that c̃A = (2, 12) and c̃B = (1, 14) is the optimal consumption for agent A and

B for �A = �B = 2. So, while A is weakly less risk averse than B (their risk aversion is

equal everywhere), c̃A is not distributed as c̃B + z̃+ "̃ with z̃ ≥ 0 and E["̃∣cB + z] = 0.

VII. Concluding Remarks

Hart (1975) proved the impossibility of deriving certain types of comparative statics

results in portfolio weights. We have proven comparative statics results instead in

the distribution of portfolio payoffs. Specifically, in a complete market, we show that

an agent who is less risk averse than another will choose a portfolio whose payoff is

distributed as the other’s payoff plus a nonnegative random variable plus conditional-

mean-zero noise. This result holds for any strictly concave C2 utility functions. If

either agent has non-increasing absolute risk aversion, then the non-negative random

variable can be chosen to be a constant. The non-increasing absolute risk aversion

condition is sufficient but not necessary. We also provide a counter example, such
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that, in general, this non-negative random variable cannot be chosen to be a constant.

We further prove a converse theorem. If in all complete markets the first agent

chooses a payoff that is distributed as the second’s payoff, plus a non-negative random

variable, plus conditional-mean-zero noise, then the first agent is less risk averse than

the second agent. We also extend our main results to a multiple period model. Due

to shifts in the timing of consumption, agents’ optimal consumption at each date may

not be ordered when risk aversion changes. However, for agents with the same pure

rate of time preference, there is a natural weighting of probabilities across periods

that preserves the single-period result.

The optimal consumption may not be ordered for agents with different risk aver-

sion when agents’ utility functions are concave but not strictly concave as we have

shown in example VI.3 and VI.4. Intuitively, the problem is that even with identical

preferences, two different optimal consumptions may not be ordered. We conjecture

that there exists some canonical choice of optimal consumption for each agent that

extends our main results for weakly concave preferences. Our paper derives compar-

ative statics results in complete markets for agents with von Neumann-Morgenstern

preferences. Machina (1989) has shown that many previous comparative statics re-

sults generalize to the broader class of Machina preferences (Machina (1982)). Our

proofs do not generalize obviously to this class, but we conjecture that our results are

still true.

We also show that our main result still holds in a two-asset world with a risk-free

asset or more generally in a two-fund separation world with a risk-free asset. However,

our main result is not true in general with incomplete markets. We further provide

sufficient conditions under which our results still hold in a two-risky-asset world or a

world with two-fund separation.
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Appendix

Proof of Lemma 1: By Pratt (1964), we have the concave transform characteriza-

tion10 that there exists G(⋅) ∈ C2, such that

UB(c) = G(UA(c)), (32)

where G′(⋅) > 0 and G′′(⋅) ≤ 0. Using the concave transform characterization of more

risk averse in (32), the first order condition (2) becomes

U ′A(c̃A) = �A�̃ =
�A
�B

�B�̃ =
�A
�B

G′(UA(c̃B))U ′A(c̃B). (33)

Because marginal utility is strictly decreasing, we have: if G′ < �B
�A
, then c̃A >

c̃B; if G′ = �B
�A

, then c̃A = c̃B; and if G′ > �B
�A
, then c̃A < c̃B. Choose c∗ so that

G′(UA(c∗)) = �B
�A

if possible, or pick c∗ = −∞ if G′ < �B
�A

everywhere or c∗ = +∞ if

G′ > �B
�A

everywhere. If c̃B ≥ c∗, then G′(UA(c̃B)) ≤ G′(UA(c∗)) = �B
�A
, i.e., G′ ≤ �B

�A
,

therefore, c̃A ≥ c̃B. If c̃B ≤ c∗, then G′(UA(c̃B)) ≥ G′(UA(c∗)) = �B
�A
, i.e., G′ ≥ �B

�A
,

therefore, c̃A ≤ c̃B. This proves statement 1.

Now suppose that A and B have equal initial wealths, then the budget constraints

for the agents are that

E[�̃c̃A] = E[�̃c̃B] = w0, (34)

therefore, we have E[�̃(c̃A − c̃B)] = 0. Since �B�̃ = U ′B(c̃B) and U ′′B < 0, �̃ and c̃B are

negatively monotonely related. Let �∗ ≡ U ′B(c∗)/�B > 0. Then �̃ ≥ �∗ ⇒ c̃A ≤ c̃B

10This result can be obtained by defining G(⋅) implicitly from (32) and using the implicit function
theorem to compute the derivatives of G(⋅).
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and �̃ ≤ �∗ ⇒ c̃A ≥ c̃B. Therefore, (�̃− �∗)(c̃A − c̃B) ≤ 0 and we have

0 = E[�̃(c̃A − c̃B)] = E[�∗(c̃A − c̃B)] + E[(�̃− �∗)(c̃A − c̃B)] ≤ �∗E[c̃A − c̃B]. (35)

Therefore, E[c̃A] ≥ E[c̃B]. This proves statement 2. Q.E.D.

Proof of Theorem 1: (Sufficiency) The monotonicity and concavity of the func-

tion and Jensen’s inequality yield E[V (Ỹ )] = E[V (X̃ − Z̃ + "̃)] = E[E[V (X̃ − Z̃ +

"̃)∣X,Z]] ≤ E[V (X̃ − Z̃)] ≤ E[V (X̃)].

(Necessity) Let �1 be the distribution of −X̃, and let �2 be the distribution of −Ỹ .

From Theorem 9 of Strassen (1965),11 the following two statements are equivalent.

(i) For any concave nondecreasing function V (s),
∫
V (−s)d�1(s) ≥

∫
V (−s)d�2(s).

(ii) There exists a submartingale �̃n (n = 1, 2), i.e., E[�̃2∣�1] ≥ �̃1, such that the

distribution of �̃n is �n.

Let Z̃ ≡ E[�̃2∣�1]− �̃1 and "̃ ≡ −�̃2 + E[�̃2∣�1], then (ii) implies that Z̃ ≥ 0. Since

�̃1 + Z̃ = E[�̃2∣�1], we have E["̃∣�1 + Z] = E[(−�̃2 +E[�̃2∣�1])∣E[�̃2∣�1]] = 0. (i) implies

E[V (X̃)] ≥ E[V (Ỹ )], and since �̃2 = �̃1 + (E[�̃2∣�1] − �̃1) + (�̃2 − E[�̃2∣�1]), we have

−Ỹ ∼ −X̃ + Z̃ − "̃, where Z̃ ∼ E[−Ỹ ∣ −X] + X̃ ≥ 0 and "̃ ∼ Ỹ + E[−Ỹ ∣ −X]. It

follows that Ỹ ∼ X̃ − Z̃ + "̃, where Z̃ ≥ 0 and E["̃∣X − Z] = 0. Q.E.D.

Proof of Theorem 2: The sufficiency follows directly from Jensen’s inequality.

The necessity can be proved using Theorem 8 in Strassen (1965). We prove it instead

using Theorem 1 above. We have E[V (X̃)] ≥ E[V (Ỹ )] for all concave function, and in

particular, E[V (X̃)] ≥ E[V (Ỹ )] for all concave nondecreasing functions. Therefore,

11In applying Strassen’s result, we ignore �n for n > 2. Formally, we set �n = �2 and �n = �2 for
all n > 2.
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by Theorem 1, Ỹ ∼ X̃ − Z̃1 + "̃1, where Z̃1 ≥ 0 and E["̃1∣X − Z1] = 0. We have

E[Ỹ ] = E[E[Ỹ ∣X −Z1]] = E[E[X̃ − Z̃1 + "̃1∣X −Z1]] = E[X̃]−E[Z̃1] ≤ E[X̃]. (36)

Now E[V (X̃)] ≥ E[V (Ỹ )] for all concave functions also implies E[V (X̃)] ≥ E[V (Ỹ )]

for all concave nonincreasing functions, i.e., E[V (−X̃)] ≥ E[V (−Ỹ )] for all concave

nondecreasing functions. From Theorem 1, −Ỹ ∼ −X̃− Z̃2 + "̃2 ⇒ Ỹ ∼ X̃ + Z̃2− "̃2,

where Z̃2 ≥ 0, and E["̃2∣X + Z2] = 0. We have

E[Ỹ ] = E[E[Ỹ ∣X +Z2]] = E[E[X̃ + Z̃2− "̃2∣X +Z2]] = E[X̃] +E[Z̃2] ≥ E[X̃]. (37)

Therefore, E[X̃] = E[Ỹ ], which implies E[Z̃1] = 0. Since Z̃1 ≥ 0, we must have

Z̃1 = 0. It follows that Ỹ ∼ X̃ + "̃, where E["̃∣X] = 0. Q.E.D.

Lemma 5 Suppose B is not weakly more risk averse than A, then there exists an

bounded nondegenerate interval [c1, c2] and hypothetical agents A1 and B1, such that

A1 strictly more risk averse than B1 (∀c,−
U ′′B1

(c)

U ′B1
(c)

< −
U ′′A1

(c)

U ′A1
(c)

) and ∀c ∈ [c1, c2],

UA1(c) = UA(c) and UB1(c) = UB(c).

Proof of Lemma 5: If B is not weakly more risk averse than A, then there exists

a constant ĉ, such that −U ′′B(ĉ)

U ′B(ĉ)
< −U ′′A(ĉ)

U ′A(ĉ)
. Since UA and UB are of the class of C2

(see our assumptions in the beginning of Section II), from the continuity of −U ′′i (c)

U ′i(c)
,

where i = A,B, we get that there exists an interval RA containing ĉ, s.t., ∀c ∈ RA,
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−U ′′B(c)

U ′B(c)
< −U ′′A(c)

U ′A(c)
. We pick c1, c2 ∈ RA with c1 < c2. Now, let

UA1(c) =

⎧⎨⎩
a1 −m1 exp(

U ′′A(c1)

U ′A(c1)
c) c < c1

UA(c) c1 ≤ c ≤ c2

a2 −m2 exp(
U ′′A(c2)

U ′A(c2)
c) c > c2,

and let

UB1(c) =

⎧⎨⎩
b1 − n1 exp(

U ′′B(c1)

U ′B(c1)
c) c < c1

UB(c) c1 ≤ c ≤ c2

b2 − n2 exp(
U ′′B(c2)

U ′B(c2)
c) c > c2,

where aj and mj (j = 1, 2) are determined by the continuity and smoothness of

UA1(c), and bj and nj (j = 1, 2) are determined by the continuity and smoothness of

UB1(c). More specifically, for j = 1, 2, we have

mj = −(U ′A(cj))
2

U ′′A(cj)
exp

(
−U

′′
A(cj)

U ′A(cj)
cj

)
, aj = mj exp

(
U ′′A(cj)

U ′A(cj)
cj

)
+ UA(cj), (38)

and

nj = −(U ′B(cj))
2

U ′′B(cj)
exp

(
−U

′′
B(cj)

U ′B(cj)
cj

)
, bj = nj exp

(
U ′′B(cj)

U ′B(cj)
cj

)
+ UB(cj). (39)

Now, UA1(c) is in the class of C2 since from (38), we have:

−mj exp

(
U ′′A(cj)

U ′A(cj)
cj

)(
U ′′A(cj)

U ′A(cj)

)2

= U ′′A(cj),

i.e., UA1 is twice differentiable. Similarly, we can show that UB1(c) is also in the class

of C2. Also, we have U ′′A1
(c) < 0, U ′′B1

(c) < 0, and ∀c, −
U ′′B1

(c)

U ′B1
(c)

< −
U ′′A1

(c)

U ′A1
(c)
, i.e., agent
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A1 is more risk averse than B1. Q.E.D.

Lemma 6 Suppose B is strictly more risk averse than A (∀c,−U ′′A(c)

U ′A(c)
< −U ′′B(c)

U ′B(c)
), and

A and B have equal initial wealths. A has an optimal choice c̃A, and B has an optimal

choice c̃B. We assume that the state price density �̃ is not a constant. Then, we have

1. c̃A ∕= c̃B;

2. if c̃A has a bounded support [c1, c2], then we have sup c̃A ≥ sup c̃B, and inf c̃A ≤

inf c̃B.

Proof of Lemma 6: We first prove statement 1 by contradiction. If c̃A = c̃B, then

we pick any two points, for example, c3, c4 (c3 < c4) in the support of both c̃A and c̃B.

From the first order conditions, we get:
U ′A(c3)

U ′A(c4)
=

U ′B(c3)

U ′B(c4)
, i.e.,

U ′A(c3)

U ′B(c3)
=

U ′A(c4)

U ′B(c4)
. However,

from −U ′′A(c)

U ′A(c)
< −U ′′B(c)

U ′B(c)
, we have: d

dc

(
log

U ′B(c)

U ′A(c)

)
< 0, i.e.,

U ′B(c)

U ′A(c)
decreases in c. We

have:
U ′B(c3)

U ′A(c3)
>

U ′B(c4)

U ′A(c4)
. Contradiction! So, c̃A ∕= c̃B.

Since B is more risk averse than A, from Lemma 1, we know that there exists c∗,

such that c̃A ≥ c̃B when c̃B ≥ c∗, and c̃A ≤ c̃B when c̃B ≤ c∗. And we have c∗ ∈ [c1, c2],

or else either c̃A ≤ c̃B but c̃A ∕= c̃B or c̃A ≥ c̃B but c̃A ∕= c̃B and both could not satisfy

the budget constraint (E[�̃c̃A] = E[�̃c̃B] = w0). Therefore, c̃A has a wider range of

support than that of c̃B. Q.E.D.
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