Agency Models and Implications to Finance

Zhiguo He

University of Chicago, Booth School of Business

IFS, Southwestern University of Finance and Economics

June 23th, 2011

Motivation

- ► Finance is about how to get money from investors (to make positive NPV projects).
- ▶ In a rational world without Ponzi scheme, the only way to get financed today is to make sure investors will be paid back later on.
- There are two kinds of frictions that prevent payback.
 - Moral hazard. Managers will take actions that benefit themselves but hurt the firm's financial situation.
 - Adverse selection. Firms have different qualities and they know who
 they are (so-called private information). Then only bad firms without
 payback ability are approaching you—lemon problem leads to market
 failure.
- Today I will focus on moral hazard issue.

Plan of the talk

- ► The simplest static principal-agent model.
 - Could be entrepreneur seeks financing from investors, or investors hire a manager.
- We will study the optimal contracting problem, and illustrate the working of the static agency friction.
- What if the contracting relationship is long-term? Recent progress in dynamic agency models.
- Then we talk about applications.
 - Put in banks/intermediaries who can alleviate agency friction through monitoring. But faces the exact same agency friction themselves.
 - Place the model in general equilibrium to study asset pricing implications.

Simple static agency model

- ► The entrepreneur (agent) has personal wealth A, but the positive project requires an investment of I > A.
- ▶ Optimal contract to make sure that investors (principal) get back I A in expectation.
- ▶ Simple agency friction. The project has binary payoff, R or 0.
 - ▶ If taking the first-best action (working/behaving), Pr(R) = p.
 - If taking the suboptimal action (shirking), $Pr(R) = p \Delta$.
 - The binary action choice is unobservable. Shirking gives the agent a private benefit of B.
- ▶ Working is the first-best action, i.e., $\Delta R > B$. We focus on implementing working.
- Limited liability. Entrepreneur does not bear personal obligation against firm's liability.

Formulating the optimal contracting problem

- ▶ The only contracting variable is the payment to the agent given success, $0 < a \le R$.
 - The only issue is how to split the pie after success.
- ▶ The optimal contract solves

$$\max_{a \in [0,R]} pa$$

- s.t. p(R-a) = I A: investors' break-even condition IC constraint so that the agent is working.
- Incentive-Compatibility: How to make sure the agent is working?

$$\frac{pa}{\text{expected pay by working}} \geq \frac{(p-\Delta)\,a}{\text{expected pay by shirking}} + \frac{B}{\text{private benefit by shirking}}$$

• As a result, IC constraint requires that $a \geq B/\Delta$.

Optimal contract

▶ Investors' break-even condition p(R - a) = I - A implies that

$$a=R-\frac{I-A}{p}.$$

- And, agent wants to put his money in, which requires that $pa > A \Rightarrow pR > I$. Positive NPV.
- ▶ But the *IC* constraint says that $a \ge B/\Delta$.
- ▶ Optimal contract: If $R \frac{I-A}{p} \ge B/\Delta$, or

$$p\left(R - \frac{B}{\Delta}\right) > I - A$$

then setting $a^* = R - \frac{l-A}{p}$, and the project takes place. Otherwise, the project cannot be financed.

Second best: some positive NPV projects is passed.

Pledgeable and non-pledgeable payoffs

- ▶ The key issue for financing is to make sure that investors can get payback from tomorrow's cash flows.
- ▶ Agency issue says that only part of *R* can be paid out to investors.
- Pledgeable part is the part that investors can potentially grab, non-plegeable part is what must go to agent due to his expertise.
- ▶ In this model, incentive provision implies that the bonus a has to be above B/Δ . B/Δ is the non-pledgeable part.
- ▶ So the project's expected pledgeable payoff is $p(R B/\Delta)$. For rational investors (ignore discounting etc) it is also the upper limit of possible financing.
- ▶ This is why financing need I A must be below the upper limit $p(R B/\Delta)$.

Simple analysis

- Finance becomes fundamentally important only when the investors (who have money) and the project's best users (who knows how to operate the project) are different persons.
 - The non-pledgeablity is one important reason that why funds are not always flowing to the best hands.
 - There are other stories to generate non-pledgeablity.
- In the second-best world, the socially optimal project gets financed when
 - ▶ R is high. Better projects are more likely to get funding.
 - A is high. That is why Bill Gates, with billions of personal wealth, can fund any profitable projects.
 - B/Δ is low. If the private benefit of misbehaving is low, easier to get financed.
 - ▶ One way to reduce B is by borrowing from banks or VC, etc.

What is the general feature of optimal contract?

- ▶ Suppose that $\widetilde{R} = R_h$ or R_l . What is the optimal contract $\{a_h, a_l\}$?
- ▶ IC constraint $a_h a_l \ge \frac{B}{\Delta}$:

$$pa_h + (1-p) \, a_l \geq \\ ext{expected pay by working}$$
 $(p-\Delta) \, a_h + (1-p+\Delta) \, a_l + \\ ext{expected pay by shirking}$
 $pa_h + (1-p+\Delta) \, a_l + \\ private benefit by shirking$

- ▶ One can show that $a_h^* a_l^* = \frac{B}{\Lambda}$ in the optimal contract.
- From investors' break-even condition, we have

$$a_I^* = E\widetilde{R} - I + A - pB/\Delta$$
project's NPV + personal wealth - Non-pledgeable rent

▶ Limited liability $a_l^* \ge 0$ gives lowest possible A to guarantee financing.

How can we approach dynamic agency problem

▶ The important lesson we learn from static agency model is that incentive-wedge:

$${\sf payoff_after_up} = {\sf payoff_after_down} + {\sf bonus}$$

where the bonus B/Δ is determined by agency friction.

- ▶ It turns out this simple result can be carried through in dynamic setting, where the agent takes action every period.
- ▶ Given this, from discrete-time to continuous-time is obvious.

How can we approach dynamic agency problem

► The important lesson we learn from static agency model is that incentive-wedge:

$${\sf payoff_after_up} = {\sf payoff_after_down} + {\sf bonus}$$

where the bonus B/Δ is determined by agency friction.

- ▶ It turns out this simple result can be carried through in dynamic setting, where the agent takes action every period.
- ▶ Given this, from discrete-time to continuous-time is obvious.
- Intuitively, this suggests linearity of optimal compensation with respect to the agent's performance.
 - ▶ It should remind you the famous Holmstrom-Milgrom (1987) result.
- Important caveat: this argument relies on the fact that the agent takes action at every period.
 - Famous Mirlees result. If the agent only takes one-time action, then
 in general we can achieve first-best result by imposing sufficiently
 strong penalty.

Dynamic agency models

- One observation: if we can set a_I arbitrarily low, then we can always find incentive-compatible contract. Given risk-neutrality, the first-best outcome is always achievable.
- Two approaches:
 - Risk averse agent with exponential utility, with unbounded a_I.
 Performance-sensitive pay provides incentives but brings about cost due to risk-aversion. Holmstrom-Milgrom (1987).
 - 2. Risk-neutral agent, but set $a_l \ge 0$ as limited liability.
- Literature 1 has passed its prime time. But its tractability allows for studying tougher problems such as persistent private information.
- Literature 2 is burgeoning. DeMarzo-Fishman (2007).
 - The key is that the agent's continuation payoff, which is the expected value of his future compensation, is linear to his performance at any period.
 - In that model, optimal long-term financing contract is a combination of long-term debt and credit line.
 - Continuous-time version is DeMarzo-Sannikov (2006).

Application (1). Introducing intermediaries

- ▶ One role of financial intermediaries (say banks, venture-capital etc.) is to provide monitoring.
- ▶ Holmstrom-Tirole (1997) explore this idea.
- ▶ In this model, suppose that banks monitoring reduces entrepreneur's shirking benefit *B* to *b*.
- But bankers have incentive problems as well. They need to get paid to monitor.
- Monitoring requires c private cost.

Optimal contracting (1)

- ▶ Imagine that we have plenty of entrepreneurs and investors.
- ▶ Without banks, B is large so that direct financing is impossible.
- ▶ Bankers are scarce with capital *M*, and enjoy the potential rent from the project.
- ▶ Consider one agent-banker-investor pair. Suppose banker gets m, agent gets a, and investor gets R-m-a. Then the optimal contract solves

$$\begin{array}{ll} \max & pm \\ m \in [0,R], a \in [0,R], a+m \in [0,R] \end{array}$$
 $s.t.$ $p\left(R-a-m\right)=I-A-M$: investors' break-even condition; $pa=A$: investors' break-even condition; IC constraint so that the agent is working $\Leftrightarrow a \geq b/\Delta$; IC constraint so that the banker is monitoring $\Leftrightarrow m \geq c/\Delta$.

Optimal contracting (2)

- ▶ Agent's break-even condition implies that $a^* = A/p \ge b/\Delta$.
- ▶ Then using investor's break-even condition, we have

$$m^* = R - \frac{I - M}{p}.$$

▶ Similarly, we require that $m^* \ge c/\Delta$, which says that the project gets financed if

$$p\left(R-\frac{A}{p}-\frac{c}{\Delta}\right)\geq I-A-M,$$

or M is sufficiently high.

▶ Intermediary capital is important in improving investment efficiency.

Application (2): Equilibrium asset pricing

- Interpret agents as hedge fund managers.
- ightharpoonup Endowment economy with one unit of risky asset, payoff Y or 0.
 - Limited participation. Only hedge funds can trade on this risky asset.
- Agency friction is modeled as diverting Y for private consumption λY , $\lambda \in (0,1)$. So $B = \lambda Y$, .
- Suppose that equilibrium asset price P. Hedge funds (price takers) raise money I-A from investors, and purchase $\frac{I}{P}$ units of asset.
- Let a (per unit of asset) be the agent's pay. The optimal contract solves

$$\max_{a \in [0,Y], I} \frac{I}{P} \cdot pa$$

s.t. $\frac{I}{P} \cdot p(Y - a) = I - A$: investors' break-even condition IC constraint so that the agent is not diverting $\Leftrightarrow a \geq \lambda Y$

Application (2): Equilibrium asset pricing

▶ Optimal contract $a^* = \lambda Y$, and

$$I^{*}(P) = \frac{AP}{P - p(1 - \lambda) Y}$$

This is the demand curve.

▶ Supply curve is P. Equating $I^*(P) = P$ gives equilibrium price

$$P^* = A + p(1 - \lambda) Y$$

Of course the price is also capped by fundamental value pY.

- ▶ The equilibrium price is increasing with hedge funds' capital.
- ► He-Krishnamurthy (2011) take the above idea into the traditional Lucas tree asset-pricing model.

He-Krishnamurthy (2011)

- The economy.
- ▶ **Intermediation**: 1) Short-term contracting between agents; 2) Equilibrium in competitive intermediation market;
- ▶ **Asset pricing**: 3) Optimal consumption/portfolio decisions; 4) GE.

Risk Premium and Interest Rate

- Asymmetry. Crisis like.
- When specialist's wealth is low, specialist bears disproportionally large risk, causing more volatile pricing kernel.
- ▶ Flight to quality. 1) Specialists precautionary savings. 2) Household fly to debt market.

Conclusion

- Agency frictions are important for us to understand corporate finance and asset pricing.
- Simple model can help us to understand how basic moral hazard issues introduces inefficiency in the second-best world.
- It is commonly viewed that the current crisis is greatly amplified by the shortage of intermediary capital.
 - ► Tech bubble burst in 2001 does not hurt banking capital;
 - while 2008 subprime housing bubble burst takes down Lehman, and hurt the whole banking system.
- ▶ This literature needs more theoretical and empirical exploration.