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Abstract

Neoclassical asset pricing bubbles are often characterized as speculative phe-
nomena in which investors pay more than the value of the asset’s dividend
stream in anticipation of receiving a profit by selling the asset later. For such
bubbles, there cannot be a last date of trade, which suggests that an infinite
number of trading opportunities is necessary to support a bubble. We show,
however, that the number of dates at which investors consume is also an essen-
tial determinant for whether bubbles can exist. Our framework is a continuous-
time model in which the number of trade dates is infinite but the number of
consumption dates is flexible and can be chosen to be uniformly bounded, finite
almost surely, or infinite. Within this framework, we show that market clear-
ing, together with monotonically increasing preferences for consumption, limits
the properties of bubbles and provides endogenous transversality conditions. In
the special case of a uniformly bounded number of consumption dates, positive
net supply assets cannot have asset pricing bubbles in an equilibrium.
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Consumption and Bubbles

Abstract:

Neoclassical asset pricing bubbles are often characterized as speculative phenomena in
which investors pay more than the value of the asset’s dividend stream in anticipation
of receiving a profit by selling the asset later. For such bubbles, there cannot be a
last date of trade, which suggests that an infinite number of trading opportunities is
necessary to support a bubble. We show, however, that the number of dates at which
investors consume is also an essential determinant for whether bubbles can exist. Our
framework is a continuous-time model in which the number of trade dates is infinite
but the number of consumption dates is flexible and can be chosen to be uniformly
bounded, finite almost surely, or infinite. Within this framework, we show that market
clearing, together with monotonically increasing preferences for consumption, limits
the properties of bubbles and provides endogenous transversality conditions. In the
special case of a uniformly bounded number of consumption dates, positive net supply
assets cannot have asset pricing bubbles in an equilibrium.



1 Introduction

In neoclassical economics, an asset pricing bubble exists if the price of an asset ex-
ceeds the lowest cost of superreplicating its future dividends.! Some studies therefore
characterize bubbles as speculative phenomena in which investors pay more than the
value of the asset’s dividend stream in anticipation of receiving a profit by selling
the asset later. Models of bubbles typically use discrete-time and infinite-horizons
(e.g. Santos and Woodford (1997)), but some use continuous-time and finite-horizons
(e.g. Loewenstein and Willard (2000b)).? Both types require an unbounded number
of dates for investors to engage in speculative trade to support a bubble; otherwise,
given no arbitrage, a simple backwards induction argument will rule out such bubbles.

We study the number of dates at which investors can consume as a essential deter-
minant for whether bubbles can exist. Our model assumes investors only consume at
discrete dates but permits continuous trading over a finite horizon. This provides flex-
ibility in choosing the number of consumption dates to be uniformly bounded across
states, finite almost surely, or infinite. This is the first study to examine the effects on
equilibrium asset pricing bubbles when the number of consumption dates has different
finiteness properties than the number of trading dates in the asset market.

Our model allows for short-lived and long-lived investors who choose consumption-
investment plans subject to lower bounds on negative wealth. We assume all investors
prefer more consumption to less. Markets can be complete or incomplete. In this
setting, the existence of an optimal consumption-investment strategy by itself can-
not rule out asset pricing bubbles. Moreover, limited-scale arbitrage strategies are
possible. These possibilities are not new to this framework and were addressed by
Loewenstein and Willard (2000a,b). But what is different about our analysis is that
we link the properties of asset pricing bubbles to consumption dates. As a result, we
consider a subset of asset pricing bubbles and limited arbitrages that we call “local
bubbles” and “local limited arbitrages,” which are connected to a finite number of
consumption dates. An asset has a local asset pricing bubble if there exists a cheaper
alternate strategy which provides at least the same payouts at every time and in every
state of nature for a fixed number of consumption dates. A local limited arbitrage
is a trading strategy which requires no wealth and provides positive payoffs over a
fixed number of consumption dates but is not feasible at all scales due to an investor’s
lower bound on wealth. Both local bubbles and local limited arbitrages are consistent

"'We allow incomplete financial markets. As such, the dividends of some or all assets might not
be exactly replicated by an alternate portfolio. An asset’s dividends are superreplicated if there is
a portfolio that has a dividend stream at least as great as the original asset’s dividends.

2Bubbles in continuous-time models were introduced by Loewenstein and Willard (2000b). These
bubbles can have uniformly bounded lifespans, and can have uniformly bounded values. Subse-
quently, several papers have studied properties of bubbles in partial equilibrium and general equi-
librium settings. Cox and Hobson (2005) and Heston, Loewenstein, and Willard (2007) analyze
bubbles in the context of option pricing. Jarrow, Protter, and Shimbo (2006, 2008) examine general
semi-martingale models with bubbles. Huggonier (2009) shows how constraints on portfolio pro-
portions invested in risky assets can introduce bubbles in models where investors are endowed with
assets.



with an optimal consumption-investment strategy.

Our first main result shows that, in equilibrium, the prices of assets that contribute
to aggregate financial wealth (those in positive net supply) cannot have local asset
pricing bubbles. Moreover, in equilibrium, the investors’ wealth constraints must
satisfy a local transversality constraint that implies local limited arbitrage strategies
cannot exist. As observed by Loewenstein and Willard (2000b), the existence of
an optimal consumption-investment strategy by itself does not imply these results.
Instead, we show that these results are implied by market clearing, together with the
fact that investors who prefer more to less finance consumption at the lowest possible
cost. More remarkably, these results hold whether or not the equilibrium value of
the aggregate endowment is finite, unlike those in other studies of equilibrium asset
pricing bubbles (e.g., Santos and Woodford (1997) and Loewenstein and Willard
(2000b)).

An immediate corollary is that in models that have a uniformly bounded number
of consumption dates across states of nature, there are no bubbles on the prices of
assets in positive net supply and no limited arbitrages. This is true even though the
number of trading dates is infinite, and it is true whether or not the value of the
aggregate endowment is finite. This identifies the number of consumption dates as
an essential determinant of whether bubbles can exist. The second corollary is that
positive net supply assets whose payoffs occur on a uniformly bounded set of dates
after which they cease trading (e.g., corporate bonds) cannot have bubbles. Again
this is surprising since partial equilibrium conditions do not imply this nor does the
work in Loewenstein and Willard (2000b).

The principal idea behind these results is that bubbles on the prices of the positive
net supply assets must be accompanied by a sufficiently large accumulation of financial
wealth. When investors prefer more to less, financial wealth represents the lowest
cost of financing future net consumption. However, net consumption is automatically
limited by market clearing because no investor’s net consumption at a given date can
exceed the cum-dividend price of the market portfolio and the amount of negative
wealth permitted to all investors (i.e., an investor could consume net of endowments
no more than the entire asset market plus what all investors could consume by running
negative wealth to the limit). This limits the value of net consumption at each date.
Over a fixed number of dates, the limit is sufficient to rule out the accumulation
of wealth needed to support a bubble. When the number of consumption dates is
uniformly bounded, market clearing thus rules out bubbles and limited arbitrages,
and an assumption about the value of the aggregate endowment is unnecessary.

Over a nonuniformly bounded number of consumption dates, however, the bound
may fail “at infinity.” For economies in which the number of consumption dates is
not uniformly bounded, local bubbles and local limited arbitrages still cannot exist,
but bubbles and limited arbitrages that pay off at infinity can exist. Here, an as-
sumption about equilibrium quantities is generally needed (we identify a few special
cases that do not need an extra assumption). We use an assumption that appropri-
ately bounds the investors’ individual net consumption plans, and show that it rules



out asset pricing bubbles regardless of the number of consumption dates. Moreover,
we show that, given a suitable bound on aggregate wealth which rules out bubbles
(e.g., a finite-valued aggregate endowment), then any long-lived investor’s equilibrium
wealth constraints must satisfy a transversality condition, and this rules out limited
arbitrages even when the number of consumption dates can be infinite. In contrast to
many infinite horizon equilibrium models, we do not assume these properties — they
are derived as a necessary equilibrium condition given a suitable bound on aggre-
gate wealth which rules out bubbles. This result suggests a deep connection between
wealth constraints and bubbles through market clearing.

Section 5 presents an example of an equilibrium that not only highlights the role
of the number of consumption dates but also has features that, to our knowledge, are
the first of their kind. In the example, the final date of consumption is known, but no
investor is sure whether he will consume at the final date or beforehand. This creates
a model in which the number of consumption dates is almost surely finite but not
uniformly bounded across paths. There is a bubble on the equilibrium price of the
positive net supply asset. The bubble has a finite lifespan and is uniformly bounded;
in fact, the asset’s price itself is uniformly bounded. Both equilibrium consumption
and consumption net of endowments are uniformly bounded. While our example uses
a simple overlapping generations framework, equilibrium does not display indetermi-
nacy typically encountered in discrete time infinite horizon overlapping generations
models. Moreover, in a version with a long lived investor, not only is there an equi-
librium bubble on a positive net supply asset, but the long lived investor’s wealth
constraint does not satisfy the usual transversality constraint.

Section 2 describes the model. Section 3 develops the preliminary results and
explains bubbles and limited arbitrage. Section 4 contains our main results and
shows how market clearing allows us to bound financial wealth. Section 5 contains
our examples. Since there is a large literature on superreplication of cash flows, we
provide extensions of these results to our setting in the Appendix. Additionally, the
Appendix contains proofs of our results.

2 The Model

We begin our study of equilibrium asset pricing bubbles by describing the continuous-
time model we use. The important features of the model are asset prices, investors’
consumption-investment choice problems (including preferences and wealth constraints),
and financial market equilibrium. We now describe these features.

2.1 Consumption Dates

Trade takes place on a time interval [0, T], where T is finite and deterministic.® Uncer-
tainty is represented by an underlying complete probability space with a probability

3Slight extensions would allow T to be a bounded stopping time or T' = oo.



measure P and a standard d-dimensional Brownian motion Z, and information ar-
rival is described by the completed filtration {F; : t € [0,7]} generated by Z. This
filtration describes the uncertainty in both asset prices and the timing of consumption
dates, and as such represents the flow of information available to the investors. We
adopt the convention that equalities and inequalities hold in the appropriate almost
sure sense, and adopt the notation E;|x] = Elz|F].

The date T represents the last date of the economy. We allow the possibility that
consumption prior to 7" might occur at dates that are potentially random. To describe
these dates, we first let g = 0 and {t, : n = 1,..., 00} denote a strictly increasing
sequence of stopping times, and define the random number N to be sup{n : t, < T}
if a t, < T exists and 0 if not. If N < oo almost surely, then there is a last date
of consumption and N + 1 is the number of consumption dates. In this case, we
assume the last consumption date is time 7', and accordingly redefine ty.1 = T so
that the consumption dates along a given path w are then described by the finite
sequence {t;(w),...,tnw) (W), tnwy1(w) = T} We also allow the possibility that
N = oo almost surely, in which case there is no last date of consumption, providing
a sort of infinite-horizon model. In the latter case, we assume lim, . t, = 1. Our
assumptions allow consumption at random dates and the possibility that the total
number of such dates is unknown until time 7.

2.2 Assets

There are K + 1 financial assets. The first asset is a locally riskless bond in zero net
supply with a price process B that is strictly positive, predictable, and finite. We
assume B has finite variation and satisfies for t < ¢, AT for all n

B(t) =1 —1—/0 r(s)B(s)ds

for a progressively measurable locally riskless rate r. The remaining K assets are
locally risky and pay dividends only on consumption dates. The cumulative dividends
until time ¢ for asset k are given by the right-continuous increasing process Dy (0) +
Yo <t;<t Dy(t;), where Dy, is nonnegative and progressively measurable process. Let

D(t;) denote the vector of dividends paid at ¢t; <T. Let S denote the nonnegative
vector process of the ex-dividend asset prices. Each S;* satisfies

St = 570 + [ m(o)spes + 3 [ ou()SEeaze) - Y D)

0<tj <t



for t < ¢,AT and all n.* The processes py, and oy; are finite, progressively measurable,
and satisfy the usual integrability conditions making the stochastic integrals well-
defined (see Karatzas and Shreve (1988, Chapter 3.2)) on [0,t, A T] for all n. Our
analysis permits incomplete markets and locally redundant asset returns.

The net supplies of the risky assets, denoted by the 1 x K row vector 7g, are
constant and nonnegative. (Modifications might allow for changing supplies of the
assets.) Asset k will be in positive net supply if 7g) > 0.

2.3 Investors

Our model permits two types of investors: Those who potentially participate for the
entire life of the economy, and those who participate for shorter periods but that
arrive and depart on (possibly random) consumption dates, such as in overlapping
generations models. We now describe the participation dates and preferences of these
investors.

We assume there is a countable set of investors, and at most a finite number I of
investors actively participate at any date ¢ € [0, T]. Investors are indexed by a positive
integer 7. For convenience, we assume investor 1 is present at time 0 and investor
1 4+ 1 enters the economy no earlier than investor 7. Let Z, denote the potentially
random set of investors who may trade financial assets on the interval [t,,%,.1]. We
also assume:

e Investors enter and exit (if at all) on consumption dates: investor i enters at
time ¢; = inf{¢;|i € Z;} and exits at time 7, = inf{t; > |i ¢ Z,} if such a time
exists and 7; = T otherwise.

e At any given consumption date t,,, each investor ¢ knows whether he has entered
the market and whether he is to exit: {i € Z,,},{i ¢ Z,,} € F,,.

e An investor who has already exited does not reenter: for ¢, > 7, {i ¢ Z,}.
When N < oo, we set Ty, = ) which implies no investors trade after 7.

e After entry, investor ¢ may trade continuously: ¢; <t, <7, = i € Z,,. There is
always at least one investor trading financial assets: P(Z, # () =1 for n < N.

Investor i is long-lived if P{i € Z,nn} > 0 for all n. Likewise, investor i is short-
lived if there exists an n < N + 1 such that sup{n — k|7, = t,,; = tx} < n; that is,
short lived investors participate over at most a fixed number of dates. Our results

4This assumption implies each gains process G (t) = S&(¢) + > o<t, <t Dr(tn) has almost surely
continuous paths and does not have a singularly continuous with respect to Lebesgue measure
component. We make this assumption to reduce notation. Given our assumed information structure,
including discontinuities and singularly continuous components would be straightforward given a
modest extension of our analysis. The assumption of the locally riskless asset in zero net supply is
not restrictive if there is a portfolio that maintains strictly positive value at all consumption dates.



will be valid for models with only long-lived investors, models with only short-lived
investors, and models with both types.®

Each investor ¢ receives private endowments given by a nonnegative progressively
measurable process e', where €'(t,) is the endowment received at the consumption
date t,. Our analysis requires only that e’ is finite almost surely. Without loss of
generality, we assume no investor receives endowments before entering the market or
after exiting the market; i.e., €'(t,) = 0 for ¢, < ¢; and t,, > 7;.

An investor’s main object of choice is cumulative consumption. A cumulative
consumption process is a nonnegative, nondecreasing, and progressively measurable
process C(t), with right continuous and left limited paths. By convention we set
C(0—) = 0. Each investor i’s preferences for consumption is an ordering =’ de-
fined over cumulative consumption processes C(t). If C; = Cy, then the cumulative
consumption process C is weakly preferred to cumulative consumption process Cs.
Cumulative consumption process C is strictly preferred to cumulative consumption
process Cy written C; =* Cy if C; =% Cy and Cy #% C,. Our later assumptions about
preferences and equilibrium will later ensure that in equilibrium the investors’ cumu-
lative consumption processes increase only at consumption dates, but for now it is
useful to allow “off-equilibrium” cumulative consumption plans that may increase at
any date.

Because our model allows short-lived and long-lived investors, our assumptions
about preferences are important for consistency between consumption and the receipt
of endowments and dividends. Specific equilibrium models would include assumptions
about this. (Our examples in Section 5 provide such specific assumptions.) To avoid
limiting our general analysis, we only assume the following general properties for our
model. Each property could be derived from more primitive assumptions.

Assumption 2.1. Let 0 denote the “zero cumulative consumption process” (C(t) =
0), and let E(t) denote the cumulative consumption process that corresponds to con-
suming the aggregate endowment:

E(t) =7sD(0) + > _e'(0)+ > (ﬁsD(tj) +> e“‘(m) -
i 0<t;<t i
We assume the following:

1. Investor i can be no worse off if we add more consumption at all dates to an
existing cumulative consumption process: Given any cumulative consumption
process C and any other cumulative consumption process C' then C + C =' C.

2. Investor i strictly prefers consuming the aggregate endowment to not consuming
at all: E =0

®We exclude investors who enter subsequent to time 0 and participate with positive probability
at all future dates. Our results do not depend on this exclusion. Instead, the exclusion greatly
reduces bookkeeping complexity.



3. Preferences are strictly monotone in the following sense: There exists a time
G with ¢; < ¢ < 7; such that given a cumulative consumption process C with
E ="C =" 0 and C with C(t) =0 fort <

Ct)=C@G) + Y élt)

$i<tn <t
and P{C(tx A7;) > 0} > 0 for some k, then C + C = C.

Part 1 of Assumption 2.1 is a standard weak monotonicity assumption and would
be implied by free disposal of consumption. It implies C' =% 0. Part 2 ensures
that preferences are at least minimally consistent with the timing of endowments
and are nonsatiated in equilibrium. Part 3 defines directions of strict improvement
for the investors’ preferences. If the investor prefers a candidate optimum to not
consuming at all, then adding consumption after some date will improve upon the
candidate optimum. This would be true if all investors strictly prefer more to less at
each consumption date, but our assumption is slightly weaker. Part 3 also implies if
the investor is short-lived and exits at 7; < T, then he strictly prefers more to less
consumption at this date. For a long-lived investor, it implies that at any consumption
date prior to the end of the economy there exists some future consumption date where
he strictly prefers more to less.

2.4 Budget Constraints

Each investor i present at the inception of the economy (i € Z,) additionally receives
an endowment of 75 (0) shares of the bond and 1 x K row vector 7&(0) shares of
the risky assets, giving initial financial wealth 7% (0)B(0) + 75(0)S*(0). Because we
assume the net supply of securities is fixed, investors who arrive subsequent to the
inception of the economy receive no endowments of securities.

Investors may consume from their endowments and their gains from trade. Each
investor 7 may trade continuously when present in the economy (on (g;, 7;)). Denote

a trading strategy by the progressively measurable process ©* = (7%, 7%), where
7i5(t) represents shares of the bond and the K-dimensional row vector mg(t) =
[T (t), .., o (£), ..., o (t)] represents shares of the risky assets at time .

Given these features, every investor 4’s financial wealth process W% must satisfy
the budget equation for ¢t < ¢, AT and all n

Wi(t) = mg(t)S™(t) + mp () B(t) = W'(0) + /(O ) my(s)dS™(s)

+ ) Wé(tj)D(th/o m(s)dB(s) + ) €'(t;) = (C(t) = C(0)) (2.1)

0<t;<t 0<t;<t

where W*(0) = 75(0)B(0) + 75(0)5°(0) + 75(0)D(0) — C(0) + €*(0). This of course



implies for any stopping time y and ¢ € [x,t, A T] for any n

Wi(t) = ws(1) S () + wy (1) B(t) = Wi(x) + / 7i(s)dS™ (s)

(xt]

+ ) Wé(tj)D(tj)Jr/ m(s)dB(s) + Y €(t;) = (C(H) = C(x)) (22)

x<t;<t X X<t;j<t

The budget equation requires consumption to be financed through trading gains and
endowments. We assume 7° makes the integrals describing portfolio gains in (2.1)
well-defined (see Karatzas and Shreve (1988, Chapter 3.2)) on [0,¢, A T for all n.

Although we describe the individuals’ wealth processes on [0,t], our framework
allows overlapping generations. Since the net supply of securities is fixed, we would
have 7%5(0) = 0, 75(0) = 0 and W¥(¢) = 0 prior to the entry of a given individual into
the economy. Then according to 2.1, Wi(s;) = €'(s;) — C(s;). If the economy has a
bounded number, I, of potential investors we set W* = 0 for all i > I.

2.5 Optimal Consumption and Investment Choice

We now present the investors’ consumption and investment choice problems. Con-
straints on negative wealth are important in continuous-time models because they
make “doubling strategies” infeasible at some scale (Harrison and Pliska, 1981; Dyb-
vig and Huang, 1988). Such constraints are typically either “endogenous” or “exoge-
nous,” the meanings of which are described below.

We use the notation a® for a process that describes lower bound on the wealth
process of investor i. Here is our main assumption about each a’.

Assumption 2.2. For investor i, a lower bound a* on wealth is pathwise nonpositive
(P(Vt € [G,ta AT] a'(t) < 0) =1 for alln) and is the value of a portfolio which may
make payments through time and does not allow investor i to exit in debt. That is,
(i) for ; <t <t, AT and alln

ai(t) = () S(t) + alp (D) B(t) = a'(<:) + /( RECIEC

+ Y k) + [ apdBe) - X gl (23)

Gi<tj <t

for a progressively measurable portfolio o' = (o', o) and a progressively measurable
process g° < 0, and (i) if 7, = t, for a finite n, then a'(t) = 0 for t > 7;. We assume
a'(s;) € F., and is finite almost surely. We also assume the portfolio o satisfies
conditions ensuring the integrals in (2.3) are well-defined on [0,t, AT] for all n.

Because a’ is nonpositive, it is always feasible for investor i to immediately liqui-
date his securities positions (if any), consume the proceeds, and not to trade at any
future date. Furthermore, since a’ is described by a portfolio strategy that allows

8



interim payments (reflected by the term g¢‘) would allow, for example, the situation
where investor ¢ can borrow up to the lower bound of the present values of his future
endowments when markets are incomplete (as in Santos and Woodford (1997)). Al-
though a’ does not allow investor i to exit in debt, we have not assumed a*(T) = 0
when N = cc.

We consider two types of wealth constraints. One type of wealth constraint is
the exogenous constraint, described by the following consumption-investment choice
problem.

Choice Problem 2.1 (Exogenous Wealth Constraints). Given securities endow-
ments w5(0) and 7%(0), endowments e;, and a fized constraint on negative wealth a'
satisfying Assumption 2.2, choose a cumulative consumption process C* that satis-
fies C* =" C' among the set of cumulative consumption processes C' for which there
1s a corresponding portfolio w for which the wealth process W satisfies the budget
equation (2.1), W(t) =0 for t <<, and the lower bound on wealth

P((Vt € [, t, AT)) W(t) > d'(t)) =1 Vn. (2.4)

A solution is the pair (C*, 7"): the optimal consumption plan C* and the corresponding
portfolio © that finances it.

Constraint (2.4) applies to every portfolio that investor i might choose. The
interpretation is a monitoring agency or trading partners determine an investor’s
creditworthiness and limit negative wealth by monitoring wealth as it evolves (Dybvig
and Huang, 1988; Magill and Quinzii, 1994; Loewenstein and Willard, 2000a). Dybvig
and Huang (1988) and Loewenstein and Willard (2000a) consider the special cases
of nonnegative wealth (¢ = 0) and negative wealth bounded in units of the bond
(W(t) > a(t) = —yB(t) for fixed v > 0). Other cases include a(t) = —vSk(t) and
a(t) = —y(7pB(t) + 7sS(t)) for fixed v > 0 75 > 0 and 71g > 0, which would limit
negative wealth by a fixed portfolio or the market portfolio as a numeraire.

In contrast, Delbaen and Schachermayer (1994, 1995, 1997b,a) allow investor i to
choose a lower bound for negative wealth simultaneously with a portfolio. As Del-
baen and Schachermayer’s results also concern bubbles, we include their endogenous
constraints in our study, as defined in the following choice problem.

Choice Problem 2.2 (Endogenous Wealth Constraints). Given securities endow-
ments w5 (0) and 75(0), endowments e;, and a collection A® of lower bounds on wealth,
choose a cumulative consumption process C* that satisfies C* =* C among the set of
cumulative consumption processes C' for which there is a corresponding portfolio w
with a wealth process W that satisfies the budget equation (2.1), W (t) =0 fort <,
and the lower bound on wealth

(Fai € A) P((VEE [t AT]) W(t) > di(t)) =1 V n. (2.5)

A solution is the triplet (C*, 7, a"): the optimal consumption plan C* and the corre-
sponding portfolio w that finances it given the lower bound a' € A°.

9



We now assume endogenous wealth constraints can be scaled arbitrarily to distin-
guish them economically from exogenous constraints.

Assumption 2.3. In Problem 2.1 A" # {0}. Each a € A" satisfies Assumption 2.2
and

ai,as € AZ = a1 tax € AZ (26)

The enforcement of endogenous constraints relies on an investor’s perception of
a limit on negative wealth (Magill and Quinzii, 1994), but does not fix a specific
bound. Every feasible strategy can be scaled by integer amounts in Problem 2.2 since
na € A'if a € A". Delbaen and Schachermayer (1994, 1995, 1997b,a) study the
special case A" = {a(t) = —yB(t) : v € N, }, which uses the locally riskless bond as
the numeraire. It is important to note that a solution to Problem 2.2 includes both
a specific trading strategy and a specific lower bound on wealth.

2.6 Equilibrium

We ultimately identify some necessary properties of equilibrium prices given exoge-
nous and endogenous bounds on negative wealth. Here we define equilibrium.

Definition 2.1. An equilibrium consists of asset prices (B,S) satisfying the as-
sumptions of Section 2, cumulative consumption processes {Ci cio=1,...} with
C' ="' 0 Vi and portfolios {m" : i =1,...} such that:

1. Given the asset prices, every investor i’s consumption and portfolio solves Prob-
lem 2.1 or Problem 2.2 given Assumptions 2.2, 2.3, and 2.1,

2. The asset markets clear: ¥Yn
Tp=» mp(t)=0 and 75=>» w(t) te[0,t), (2.7)

and
3. The consumption market clears: for allt <t, NT, Vn

Z(J"(t): > (ﬁsD(tj)JrZe"(tj)).

0<t;<t

We study only the properties of prices necessary for an equilibrium to exist. While
we do not study sufficient conditions for an equilibrium, our conclusions about equi-
librium asset pricing and bubbles are valid for any equilibrium of a specific model
satisfying our assumptions.

Remark 2.1. Within a given equilibrium, each investor i’s constraint on negative
wealth a® can be reqarded as fized. This is automatic for exogenous constraints. Even
for endogenous constraints, the existence of an equilibrium would require every in-
vestor to choose an optimal portfolio and a corresponding a* € A* so that it is feasible
given the bound on negative wealth (2.5).

10



3 Bubbles and Arbitrage Given Optimal Choice

We now provide assumptions which ensure our model is consistent with optimal
choice. Some of our results in this section are similar to those in previous work.
However, the scope of our model is more general in terms of assumptions about
market completeness, the types of wealth constraints, and the form the constraints
may take. This generality will later be important for our main analysis and requires
different techniques, so we present complete extensions of the results that we use.

3.1 State Prices

Our study of asset pricing bubbles will ultimately compare asset prices to their fun-
damental values. Fundamental value inherently involves a notion of “state prices.”
Here we identify necessary properties of state prices given optimal portfolio choice in
our model, allowing for incomplete markets and locally redundant assets.

Recalling the notation in Section 2.2, let o(t) be the K x d asset volatility matrix
(01 (t))k=1,..K:j=1....a of the risky assets, let 1(t) be the column vector of (p(t))k=1,.,
of local expected returns, and let S(¢) be the column vector of the risky asset prices
(Sk(t))iz1,..a- The matrix o(t) might not be invertible (incomplete markets) and
might have rank less than K (locally redundant assets).

We first state two assumptions to ensure that investor choice problems at least
are consistent with a candidate equilibrium.®

Assumption 3.1. There exists a progressively measurable process 6 such that
pu(t) —r(D)1k = o(1)0(t), (3.8)
Lebesguex P-almost everywhere on [0,t, AT for all n.

The process 8 is often called the “local price of risk.” The local price of risk reflects
the condition that two portfolios with the same volatility must have the same drift, or
else there would be an arbitrage that maintains nonnegative wealth. See Karatzas and
Shreve (1998, Theorem 1.4.2) for the construction of this strategy. Such an arbitrage
would be inconsistent with a solution for either choice problem above; hence, a local
price of risk is necessary for optimal choice.

Given 0 of Assumption 3.1, let 6(¢) be its orthogonal projection onto the range of
o'(t) for all t € [0,T], where prime denotes transpose. Karatzas and Shreve (1998,
Lemma 1.4.4) show 6 is progressively measurable. Define the stopping time 7 by
7 =inf{t € [0,T]| [} ]|0(s)|[*ds = oo} where 7 = oo if such a ¢ does not exist. We
assume P(7 = 0) = 0. Define

exp (— [10'(s)dZ(s) — L [7]|0(s)|[2ds
P(t) = ( B ) (3.9)

SEarlier versions of this paper showed that these assumptions are really necessary conditions
for existence of an optimal strategy under additional mild assumptions about the monotonicity of
preferences. The corresponding lengthy proofs were distracting to our main points, so this version
simply labels the conditions as assumptions.
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on {t < 7} and p°(t) =0 on {t > 7}.

The process p° can be thought of as a state price density. In discrete-state models,
zero state prices imply zero-cost arbitrage strategies inconsistent with optimal choice
(Dybvig and Ross, 1987). But Loewenstein and Willard (2000a) show in continuous-
time models that zero state prices might imply only “approximate arbitrages” that
require vanishingly positive initial investment, maintain nonnegative wealth, and gen-
erate ever larger payoffs on {p°(t,) = 0}. These approximate arbitrages and the as-
sumptions about preferences that would rule them out distract from our main points,
so we make the following assumption.

Assumption 3.2. p°(t, AT) > 0 for all n.

Remark 3.1. When N < oo so that the last date of the consumption is at time T,
our assumption says p°(T) > 0. However, when N = oo, our assumption neither
implies that lim, 7 p°(t) exists nor does that it is strictly positive. Our assumption
also does not imply the existence of an equivalent martingale measure.

Together, Assumptions 3.1 and 3.2 rule out strategies which are obvious “arbi-
trages:” strategies that start with no wealth, maintain nonnegative wealth and pay-
off strictly positive cumulative consumption with positive probability. As discussed
in Dybvig and Huang (1988) and Loewenstein and Willard (2000a), such strategies
would be inconsistent with any of our investors having optimal solutions since, given
a candidate optimum, an investor can feasibly add such a strategy at any scale.

Proposition 3.1. Given Assumptions 3.1 and 3.2, any strategy which satisfies 2.1
with ¢ = 0, 75(0) = 0,75(0) = 0 and maintains nonnegative wealth must have
C(t) =0 forallt € [0,t, ANT] and all n.

Proof. See Appendix A.2. m

This proposition does not say strategies which start with no endowments, receive
no endowments, and obey a wealth constraint described in Assumption 2.2 must have
C(t) =0 for all t € [0,¢, AT] and all n. Such a strategy may not be feasible at any
scale when added to a candidate optimum as we explain in the next sections.

3.2 Bubbles and Limited Arbitrage

The main point of this section is that asset pricing bubbles and limited-scale arbitrage
opportunities are consistent with optimal choice in the present model. Thus they may
be regarded as “consistent” with partial equilibrium. Section 4 will show, however,
they are inconsistent with the market clearing required by an equilibrium.

The next subsection defines and discusses asset pricing bubbles; the subsequent
subsection will define and discuss limited arbitrage opportunities.
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3.2.1 Asset Pricing Bubbles

The Law of One Price says two portfolios having the same payouts have the same
price. A violation of the Law of One Price is often associated with an asset pricing
bubbles, which we now define.

Definition 3.1. Asset k has an asset pricing bubble if its price exceeds the

lowest cost of a portfolio that 1) satisfies the budget equation (2.1) with cumula-

tive consumption which is at least as high as the asset k’s cumulative dividend :
C(t,) > Z”ANH k(t;) for all n and 2) maintains nonnegative wealth W (t) > 0.

The portfolio in Definition 3.1 will be said to superreplicate the payoffs of asset k.
Our definition is consistent with that in Santos and Woodford (1997). A bubble might
seem to be inconsistent with optimal choice since it creates an arbitrage opportunity.
However, arbitraging a bubble involves short selling the higher-cost asset and buying
the lower-cost superreplicating portfolio. The feasibility of this strategy depends on
the nature of the bubble, the dates investors can trade, and on the lower bounds on
negative wealth, as we describe in this section and the next.

We also study a subset of asset pricing bubbles that have “finite” lifetimes, as first
identified in Loewenstein and Willard (2000b). We will call them “local asset pricing
bubbles” (see Jarrow et al. (2006, 2008) for a related idea).

Definition 3.2. Asset k has a local asset pricing bubble if, given a fized n, the
price exceeds the lowest cost of a portfolio that 1) satisfies the budget equation (2.1)
with cumulative consumption which is at least as high as the asset k’s cumulative
dividend until time t, NT : C(t,) > ZmANH k(t;) for all m < n, 2) has time
to AT value which exceeds the asset value : W (t, NT) > Sk(t, NT) and 8) maintains
nonnegative wealth W (t) > 0.

A local asset pricing bubble is inconsistent with the existence of an equivalent
martingale measure on [0, ¢,] for all n. As such, discrete-time infinite-horizon models
(as in Santos and Woodford (1997)) cannot have local bubbles. However, as discussed
in Loewenstein and Willard (2000a,b), the existence of an equivalent martingale mea-
sure is not necessary for existence of an optimum in a continuous time model when
investors face wealth constraints. Loewenstein and Willard (2000a,b) and Heston
et al. (2007) provide examples of local bubbles.

Bubbles inherently involve the lowest superreplication cost. We now link super-
replication costs to state prices for incomplete markets. Let V denote the set of
progresswely measurable d-dimensional processes v with o(t)v/(t) = 0, Lebesgue ® P

a.s. andfo l|v(s)||?ds < oo, P-a.s. For a given v € V, define
oy P (= o (0'(s) + v(s))az(s) = & s 16Gs) + v/(s)][*ds) -

Every p” is nonnegative and continuous. In this context, financial markets are com-
plete if V = {0}. Given Assumption 3.2 and fo l|v(s)]|*ds < oo and Revuz and
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Yor (1994, Exercise 1V.3.25) imply P(p”(t, AT) > 0) = 1 for all n and Vv € V
and we can link the p”’s to the replicating costs of dividends. Karatzas and Shreve
(1998) provides many results on costs of superreplicating a given sequence of payouts.
Section A.1 in the Appendix provides extensions of these results to our setting.

The possibility of bubbles in a partial equilibrium reflects the observation that

N+1

1)SPx(t) + Z p”( i) Lt <ty

and p”(t)B(t) are only nonnegative local martingales (supermartingales) for each
v € V." They are not necessarily martingales. Therefore, Vv € V,

SX(0) > FE MZ+ p"(t;)Di(t;) + p"(tn NT)SP(t, ANT) (3.11)
and
B(0) > E[p"(t, NT)B(t, NT)] (3.12)

An inequality in (3.12) or (3.11) is strict if and only if the corresponding process is
not a martingale. Given a strict inequality for all choices of v, there is a local asset
pricing bubble.

Proposition 3.2. Given Assumption 3.2, if the inequality

nAN+1
SE(0) >sup B | Y p"(t) Dilty) + p (tn AT) S (tn AT) (3.13)
vey =1

holds, then there is a trading strategy that satisfies (2.1) with initial wealth w < Sg*(0),
¢! =0, generates cumulative consumption C(t) > 2 o<t;<t Di(ty) fort <ty AT and a
terminal payoff W(t, ANT) > Sg*(t, AT), and maintains pathwise nonnegative wealth.

Proof. See Appendix A.2. n

Proposition 3.2 identifies when asset k has a local asset pricing bubble. The
righthand side of inequality (3.13) is the lowest cost of superreplicating asset k’s
dividends and time t, AT payoff given pathwise nonnegative wealth. An analogous
result holds for the locally riskless bond price B when

B(0) > sup E [p"(t, NT)B(t, NT))]. (3.14)

vey

"The local martingale property follows from Ito’s Lemma. A process X is a local martingale if
there is an increasing sequence of stopping times {7,,} such that lim, . 7, = T almost surely and
each stopped process X (¢t A7,,) is a martingale. A nonnegative local martingale is a supermartingale
(Karatzas and Shreve, 1988, Exercise 1.5.19). Strict local martingales are “explosive” on small
probability sets in that they satisfy both E[max;c(o ) p” (t)Sk(t)] = co and P(max;c(o, ) p” (t)Sk(t) >
A) < S(0)/A (Protter (1992, Theorem 1.47) and Revuz and Yor (1994, Theorem I1.1.7)).

14



In this case, the bond would have a local asset pricing bubble.

At this point, readers new to the idea of finite-lived bubbles in continuous-time
models might want examples. However, the literature already contains numerous ex-
amples with complete discussion of how they are consistent with optimal portfolio
choice. We refer the reader to Loewenstein and Willard (2000a,b) and Heston et al.
(2007) for explicit closed-form examples of bubbles — some for well-known models of
asset prices — that are consistent with optimal portfolio choice and strictly mono-
tone preferences. We also present an (albeit more complex) example of a bubble in
Section 5.

One main focus of this paper is identifying conditions for which there are no local
asset pricing bubbles.

Proposition 3.3. If there is av* € V such that p” (t)S,gf"(t)+Z;.V:+11 p* (t5) Di(t;)11,<ty
is a martingale on [0,t, NT| for all n, then

nAN+1
(Vn) SEO)=E | S p (6)Dult) + 5 (ta AT)SE(ty AT) (3.15)

j=1
and asset k does not have a local asset pricing bubble.
Proof. See Proposition A.1. m

If a v* with the properties in Proposition 3.3 exists, then the stock price represents
the lowest cost of superreplicating asset k’s dividends with a portfolio that maintains
nonnegative wealth. The existence of such a v* is not implied by the existence of an
optimal consumption-investment strategy. We will show, however, that the existence
will be implied by existence of an equilibrium in Section 4.

Local asset pricing bubbles are a subset of asset pricing bubbles. To see this,
apply Monotone Convergence and Fatou’s Lemma to (3.15), to get

N—+1
SP(0) = E [ Y " (t;) De(ty) + liminf p” (£, AT) S5 (tn AT)
Jj=1
N+1
>E|> o (tj)Dk(tj)] . (3.16)
j=1

It is possible that an asset does not have a local asset pricing bubble yet has an
asset pricing bubble. An asset pricing bubble would be related to attaching a price
to payoffs not in the consumption set. For example in an infinite horizon model, an
asset pricing bubble might be thought of as attaching value to payoffs at infinity.
Given this, we should be careful to note that it will be difficult to provide conditions
to rule out asset pricing bubbles on zero net supply assets since they can effectively
promise payoffs outside the consumption set. Our next result identifies a property of
an asset price with an asset pricing bubble.
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Proposition 3.4. The inequality

SEA(0) > sup B

vey

> Py(tj)Dk(tj)] (3.17)

j=1

implies there is a trading strategy that satisfies (2.1) with initial wealth w < S§(0),
¢! =0, with cumulative consumption C(t) > Zo<tj§t Dy (t;) fort <t, AT for all n,
and maintains pathwise nonnegative wealth.

Proof. The proof follows directly from Proposition A.2: take a = 0, v(t;) = Dy(t;),
and w = sup,cy F Z;V:’ZI p”(t;)Di(t;)]. O
The righthand side of inequality (3.17) is the lowest cost of superreplicating as-
set k’s dividends given pathwise nonnegative wealth, thus if inequality (3.17) holds,
asset k has an asset pricing bubble. For example, when N = oo in our model, the bond
would always have an asset pricing bubble because it pays no dividends. This should
cause no concern, however, since it is in zero net supply. If N < oo one might interpret
the terminal value equal to a liquidating dividend and if B(0) > sup,., E[p"(T)B(T)]
there would exist a portfolio which superreplicates the terminal value of the bond
which requires initial wealth less than B(0) and maintains nonnegative wealth.

3.2.2 Wealth Constraints and Limited Arbitrage

The preceding subsection identifies properties of asset prices that lead to asset pricing
bubbles. We now study the investors’ lower bounds on wealth. These lower bounds
are described by portfolios of assets, and the assets in these portfolios may contain
bubbles. Even if the assets have no bubbles, these portfolios might follow suicide
strategies (see, e.g., Harrison and Pliska (1981)) that “throw away” value through
time. If this is the case, then the payouts —g* in the lower bound can be superrepli-
cated at a cost lower than —a'(s;), the initial wealth required by the portfolio that
defines the negative wealth constraint.

This produces “limited arbitrages” as first identified by Loewenstein and Willard
(2000a,b). These are like unlimited arbitrages in that they require no investment
and provide a positive probability of future consumption (with zero probability of
negative consumption). Unlimited arbitrages, however, maintain nonnegative wealth
and therefore are not limited by lower bounds on wealth. Limited arbitrages differ by
requiring some amount of negative wealth. Constraints on negative wealth therefore
limit investors’ positions in these strategies because at large enough scale the investor
would violate the constraint.

In this section, we connect the properties of wealth constraints and state prices
to identify conditions under which limited arbitrages can or cannot exist. These
conditions vary slightly between short-lived and long-lived investors.

We begin with the case for long-lived investors because it is more direct.
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Proposition 3.5. Let a® be a given constraint on negative wealth satisfying Assump-
tion 2.2 with ¢; = 0. The process —p”(t)a’(t) — Z;V;ll p¥(tj)g' (t;) e, <t,<t} 15 @ non-
negative local martingale and hence a supermartingale. Moreover, the inequality

—a'(0) > sup E
vey

> —p”(tj)gi(tj)] (3.18)

j=1

holds if and only if there is a portfolio trading strateqy and cumulative consump-
tion process such that the corresponding wealth process satisfies the budget equa-
tion (2.1) with no initial wealth (W(0) < 0) and €' = 0), provides positive con-
sumption (C(t) > 0 and C # 0), and honors the constraint on negative wealth
(P((Vt € [0,t, NT))W(t) > a'(t)) = 1 Vn). This strateqy, however, must risk
negative wealth (P((3t € [0, T)) W(t) < 0) > 0).

Proof. See Appendix A.2. n

The absence of the limited arbitrages for long-lived investors in Proposition 3.5
then requires the equality

—a'(0) =sup E
vey

> —P”(tj)gi(tj)] : (3.19)

=1

In Section 4, we provide conditions for equilibrium which produce equality (3.19) and
provide new restrictions on asset prices and wealth constraints.

The corresponding result for short-lived investors is more complicated because
they enter and exit at different times and because we only assume a'(s;) is finite
almost surely. As such, we will often present our results on an F_, measurable subset
such that sup,cy, E[—p”(si)a’(s;)1{a3] < co. This will allow us to make statements
conditional on the subset A on which the conditional expectations will be defined.
For short-lived investors, we have the following analog to Proposition 3.5.

Proposition 3.6. Let a’ be a given constraint on negative wealth satisfying Assump-
tion 2.2. Then on any A € F¢, ({tn > G} with sup,ey E[—p”(s;)a*(6)1ay] < oo, the

process —p¥ (t)a'(t) —Zj.vjll P¥(t;)g' (t;)Lic,<t, <t} is a nonnegative local martingale and

hence a supermartingale for all v € V. Moreover, the inequality

B [(S = 610 ) oy 7100 A )t A7) 140
p”(si)

—ai(gi)l{A} > essup,cy

(3.20)
holds if and only if there is a portfolio trading strategy and cumulative consumption
process such that the corresponding wealth process satisfies the budget equation (2.1)
with no nitial wealth (W (0) = 0), €' = 0), provides positive consumption P(C(t, A
7) > 0) = 1, provides nonnegative wealth by some date ((In) P(W (t, AT;)1iay > 0) =
1), and honors the constraint on negative wealth (P((Vt € [g;, t, AT;])) W (t) > a'(t)) =
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1).8 This strategy, however, must risk negative wealth (P((3t € [s;,tn A 7)) W(t) <
0) > 0).

Proof. See Appendix A.2. n

The strategy in Proposition 3.6 differs from that in Proposition 3.5 in that the
former guarantees nonnegative financial wealth by some consumption date. The for-
mer therefore represents a limited arbitrage that can obtained over a finite number
of consumption dates; in this manner, it resembles a short-lived bubble. The absence
of such strategies in Proposition 3.6 therefore requires the equality

E. [(Z;i\i\f—l-l _py(tj)gi(tj)1{€i<tj} — p"(tn A Ti)alty, A T¢)> 1{,4}}
P (si)

—a'(si)1{ay = essup,ey

(3.21)

for all A with the properties listed in Proposition 3.6. In Section 4, we show that the

existence of equilibrium will produce equality (3.21) and provide new restrictions on
asset prices and wealth constraints.

We remark that for the endogenous constraints in Problem 2.2, we get equal-
ities (3.19) and (3.21) automatically. This is because the existence of an optimum
rules out strategies like those in Propositions 3.5 and 3.6 because the endogenous con-
straints can be arbitrarily scaled (Assumption 2.3). Thus equalities (3.19) and (3.21)
would hold for all a* € A’

We now turn to restrictions implied by the existence of an equilibrium.

4 Equilibrium

Having demonstrated that bubbles and limited arbitrage are potential “partial equilib-
rium” properties consistent with optimal portfolio choice and constraints on negative
wealth, we now show that equilibrium provides additional restrictions. Short-lived
bubbles and short-lived limited arbitrages are automatically inconsistent with the
market clearing of an equilibrium. Long-lived bubbles and long-lived limited arbi-
trages are not automatically inconsistent with equilibrium, but can be ruled out if
equilibrium net consumption satisfies certain properties. Our results identify equilib-
rium consumption as a new important ingredient in the formation of bubbles.

Remark 4.1. From Definition 2.1 we observe that in equilibrium, each investor’s
cumulative consumption must satisfy

for the nonnegative adapted process ¢'(t;) = AC'(t;). For this section it is more
convenient to work with the process c'.

8Essential supremum describes the least upper bound for a set of random variables. See foot-
note 15 for the definition.
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We remind the reader of our main assumptions.

Assumption 4.1. Assumption 3.2 holds; i.e., p°(t, AT) > 0 for all n. Lower
bounds on wealth are described by the nonpositive values of self-financing portfolios
as in Assumption 2.2. For endogenous constraints, set A* has the scaling property
in Assumption 2.3. Every investor chooses an optimal portfolio for Problem 2.1 or
Problem 2.2. Furthermore, investor preferences satisfy Assumption 2.1.

Given Assumption 4.1, our main results boil down to the observation that bubbles
on positive net supply assets are not possible if every investor ¢’s financial wealth is
appropriately bounded. Our first main result is that this bound is automatic in an
equilibrium over a uniformly bounded number of periods. This will rule out short-
lived bubbles and short-lived limited arbitrages. When the number of periods is
not uniformly bounded, however, the bound is not automatic and must be shown to
hold in equilibrium. Our second main result shows that assuming this property of
equilibrium net consumption will rule out all asset pricing bubbles. In this manner,
our main results tie the formation of bubbles to the properties of the consumption
set, rather than just the number of trading opportunities.

Our first main result highlights the automatic nature of the bounds for short-lived
asset pricing bubbles and short-lived limited arbitrages.

Theorem 4.1. Assume an equilibrium exists. Then there exists a v* € V such that
1. The equilibrium prices of the positive net supply assets do not have local asset
pricing bubbles; that is, if Tsy > 0,

nAN+1

SE0)=E | Y p" () Di(ty) + p” (ta AT)SE(ta AT)| | (4.22)

and inequality (3.11) holds with equality.

2. There are no limited arbitrage opportunities over any given fized number of
consumption dates for both exogenous and endogenous constraints; that is, for
every investor i and A € F, with sup,cy, E[—p”(s)a'(;)1{a3] < o0,

B [ =0 ()6 () 10y — 7 (b A Ti)alt A7)
P (<)

Liay
(4.23)

and inequality (3.21) holds with equality for each a'. For endogenous constraints,
equality (4.23) additionally holds for every a' € A'.

—a'(6i)1{a} =

Proof. See Section A.3.1. O

Theorem 4.1 shows that local asset pricing bubbles that would affect equilibrium
aggregate financial wealth and short-lived limited arbitrages are simply incompatible
with equilibrium. Returning to our theme, we illustrate how market clearing limits
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wealth accumulation. For illustration we consider times up to time ¢;. Notice for
each investor m € Zy, W™ (t) > a™(t) implies W™ (t;—) > a™(t;—) and from this it
follows ¢™(t1) — e€™(t1) + W™(t1) — (a™(t1) + g™ (t1)) > 0. Therefore,

"(tr) —e™(t) + W™(t) — (a™(t) + g™ (t))
< Z tl — €' tl) + W (tl) ( i(tl) + gi(tl))

i€lp

= 75S™(t) + TsD(t) — > _ (a'(tr) + ¢'(tr)) . (4.24)

i€Zp

where the equality follows from market clearing. The quantities in the last expression
are nonnegative payouts of a portfolio with finite cost; namely, those of the market
portfolio and the sum of the portfolios that describe the investors’ lower bounds on
negative wealth. Our monotonicity assumptions also imply that each investor’s wealth
must satisfy on ¢ < ¢; (see Proposition A.3)

(¢
W (0= (0) = esup,ey B | S8 (€(00) = €7(00) + 7700  @"(00) + 7(0)
(4.25)
The appearance of terms related to the wealth constraint in Equation (4.25) may
seem unusual given more familiar results in Karatzas and Shreve (1998); however

they reflect the ability of investor ¢ to exploit any limited arbitrage if one should
exist.? Equations (4.25) and (4.24) then imply

W™ (t)—a™(t) < essup, ey Ei

py(tl) —  Qex = ( i
D) (WSS (t1) + s D(t1) — Z (a’(t1) +g (tl)))]

i€To

(4.26)
The right hand side of the above expression represents the value of a portfolio which
superreplicates the payoff 7gS™(t1) +TsD(t1) — ez, (a'(t1) 4+ ¢'(t1)) and maintains
nonnegative wealth. If the above expression did not hold the investor could improve
by following the strategy

a™(t) + essup, ey Er

() <7-rSSeX(t1) +7sD(ty) — Z (a’(t1) + g%)))] > a™(t)

p V(t) i€Zp

(4.27)
and investing the surplus in a portfolio which generates positive consumption and
maintains nonnegative wealth. The payoff to this strategy would be higher than

ﬁssex(tl) + ﬁsD(tl) — Z (ai(t1> -+ gi<t1)) + am<t1) + gm(tl) (428)

i€Zp

But this would be inconsistent with equilibrium since it would imply other investors
would have to lose more than their lower bounds on wealth permit. Summing over

9See Loewenstein and Willard (2000a,b) for a similar idea in a less general setting.
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all 1 € Zy and recall we assume at most [ investors are present at time 0, we have

50X ) < Dxcss, oy B

i€Zp

(0

(4.29)
These bounds and Lemma A.4 now imply there is no local bubble on positive net
supply assets or limited arbitrage over the interval [0,¢;]. For an arbitrary interval
[t;,tj41], the same analysis goes through if the economy is composed only of long lived
investors; some care is required to deal with short lived investors who arrive after %,
since we only assume their endowments and lower bounds on wealth are finite almost
surely. We address this in Section A.3.1, but the proof largely relies on this type of
analysis.

Before moving to the implications of Theorem 4.1, first note that the derivation
of the above bounds does not depend on the characteristics of investors arriving at
time t1. As a result, if we want to assume new investors arrive with endowments of
securities, the main ideas of Theorem 4.1 can still be derived although the statement
of the theorem would be more complex due to the need to keep track of the asset
supplies through time. Secondly, although we have assumed that investors choose the
portfolios to be F; progressively measurable, the above bounds still hold even if some
investor potentially is allowed access to information represented by a finer filtration.
In this sense, asymmetric information will not change our main conclusions.

We state a corollary.

Corollary 4.1. Assume an equilibrium exists. Given the v* in Theorem 4.1, for any
positive net supply asset k for which S(t) =0 for t > t, 1 for some n, then asset k
has no asset pricing bubble since

5¢7(0) = E

>0 <tj>Dk<tj>] . (4.30)

j=1

Thus an asset that pays dividends only over a uniformly bounded number of periods
and ceases trade cannot have an asset pricing bubble. Moreover, if there is a uniformly
bounded number of consumption dates (i.e., there exists n with N +1 < ), there are
no asset pricing bubbles on any positive net supply asset.

Proof. Follows directly from Theorem 4.1. O]

Corollary 4.1 illustrates the power of Theorem 4.1 for ruling out local, or “short-
lived” asset pricing bubbles. Under our assumptions, equilibrium rules out local asset
pricing bubbles on assets in positive net supply. So assets that cease to trade after a
fixed number of dates, such as corporate debt, cannot have asset pricing bubbles.

More importantly, Corollary 4.1 gives us our main result: In an economy that has
a strict finite lifetime — with the number of consumption dates uniformly bounded —
no positive net supply assets can have asset pricing bubbles, whether local or not, and
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investors’ wealth constraints cannot permit any limited arbitrage. In contrast to pre-
vious studies this finding does not depend on the value of the aggregate endowment.
A potentially unbounded number of consumption dates is a necessary condition for a
positive net supply asset to have a bubble.

For infinite-lived economies in which assets may have infinite lifetimes, such as
equity or fiat money, Theorem 4.1 cannot rule out the possibility of a bubble. While
bounds over a finite number of periods is automatic, summing the costs of such bounds
over an infinite number of periods might not provide a finite cost. Hence, in general,
an extra condition is needed. We will use the following condition. It is satisfied under
other assumptions sometimes used in the literature, as we will explain.

Condition 4.1. There exists a nonnegative progressively measurable process v such
that every investor i’s net consumption satisfies c'(t,) — €'(t,) < y(t,), where

sup F/
vey

> p”(tn)v(tn)] < 0. (4.31)

The process v in Condition 4.1 must be the same for every investor.

Proposition 4.1. If Condition 4.1 is satisfied in equilibrium, then under the same
assumptions as Theorem 4.1 there are no asset pricing bubbles on the equilibrium
price of any asset in positive net supply. That is, there exists a v* such that

Si'(0) = E

> 0 (tn)Dk(tn)] : (4.32)

and inequality (3.17) holds with equality. Additionally, for every long lived investor,
equilibrium requires wealth constraints to satisfy the transversality condition

i B |0 =0 ) ) o | B [0 0 () () 5]
—a'(t) = essup,cy (0 =— PR .

Proof. See Section A.3.2. O

Thus under Condition 4.1 there are no asset pricing bubbles on positive net supply
assets. In addition, for long lived investors, there are no bubbles on the portfolios
which limit negative wealth. In the case where the number of consumption dates
cannot be uniformly bounded across states existence of equilibrium rules out doubling
strategies, Ponzi schemes, or shorting portfolios with bubbles not just on [0,%,] as in
Theorem 4.1 but on the entire life of the economy even if the economy does not have
trade at T' as would be the case when N = oo. This result is important since it
says under the same conditions which rule out bubbles, equilibrium also requires long
lived investors’ wealth constraints to obey a transversality condition. This result thus
displays an important connection between wealth constraints and bubbles through
market clearing.
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To see how Condition 4.1 implies bounds on wealth accumulation, we sketch the
main ideas of the proof of Proposition 4.1. The condition in Equation (4.31) implies
there exists a portfolio strategy which maintains nonnegative wealth and superrepli-
cates the payoff stream 7(¢;). For all investors, in particular short lived investors,
financial wealth must satisfy

N+1
B[S0 o ()1(8) gy
p(t)

because, if this inequality did not hold, given Assumption 2.1 part 3, the investor
would derive higher utility by appropriately switching to the superreplicating strategy
for v (see Proposition A.2) which maintains nonnegative wealth and consuming more
than v + ¢! and, consequently, more than the equilibrium consumption C*.

Additionally, each long lived investor who prefers more to less finances consump-

tion net of endowments at its lowest possible cost, so each long lived investor i’s
equilibrium financial wealth must satisfy

N+l i
B[S 0 1) (1) — 6'(8)]
p(t)
because, if this inequality did not hold, the investor would derive higher utility by ap-
propriately switching to the superreplicating strategy for v which exploits any limited
arbitrage (see Proposition A.2) and consuming more than y + €' and, consequently,
more than the equilibrium consumption C*. Second, using this for long lived investors,

(A.22) for short lived investors, plus market clearing for the assets implies aggregate
financial wealth must be bounded:

TSN — Y ai(t):ZWi(t)— > d()

i,long lived i,long lived
N+1 ;
By |:Zj:n+1 " (t;) (7<tj) - Zi,long lived gl(tﬂ)]
P (t)

Showing that this rules out asset pricing bubbles and implies transversality constraints
on long lived investors now requires some technical results we take up in Section A.3.2.

A necessary condition typically associated with the existence of bubbles on pos-
itive net supply assets is the need for frequent trade (so frequent, in fact, to be
unbounded). Theorem 4.1 and Proposition 4.1 add a new necessary condition of
frequent consumption when investors prefer more to less. For a model with a uni-
formly bounded number of consumption dates there cannot be asset pricing bubbles
on positive net supply assets. When we have a potentially unbounded number of con-
sumption dates, we would want to verify Condition 4.1 holds to rule out asset pricing
bubbles on positive net supply assets. This same condition then immediately implies

investor equilibrium wealth constraints must also satisfy transversality constraints
both for endogenous and exogenous constraints. Section 5 shows the importance of

W'(t) < essup,cy (4.33)

W(t) — a'(t) < essup,cy

on [t,,tni1)

< I X essup,,¢y, on [ty tns1). (4.34)
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the uniform bound presenting an equilibrium bubble given an almost surely finite,
but not uniformly bounded, number of consumption dates. In addition, in a variant
of the model with a long lived investor, the long lived investor’s wealth constraint
does not satisfy a transversality condition.

The following result helps to explains how our result differs from what is known
in the literature in discrete time infinite horizon models.

Corollary 4.2. In equilibrium, Condition 4.1 is satisfied when the present value of
the aggregate endowment is finite; i.e., when

sup K
vey

Z p”(tn)e(tn)] < 00. (4.35)

Regardless of the number of consumption dates, an appropriate choice of v given this
assumption is

Y(tn) = e(tn) + TsD(t,).

Inequality (4.35) is known to be satisfied in an “asset economy” in which the
endowments of the consumption good are identically zero (i.e., ¢/ = 0 for every
investor ¢) or in which endowments are bounded by some multiple of the assets’
aggregate dividends. This is true regardless of the number of consumption dates, and
choosing v to be proportional to 7sD(t,) would be appropriate for Condition 4.1.
See Santos and Woodford (1997) further discussion along these lines for discrete-time
models.

As mentioned before, a necessary condition often associated with bubbles on pos-
itive net supply assets is frequent trade in the asset markets. The polar opposite is
an economy with no trade in the asset market. Our next proposition indicates for
economies with no trade in the asset market there are no bubbles on positive net
supply assets. The conditions listed in the proposition are only meaningful for an
economy composed only of long lived investors.

Corollary 4.3. In any equilibrium with no trade in the asset market, or if ¢'(t,) —
e'(t,) > 0 for all i and all n, Condition 4.1 is satisfied. Regardless of the number of
consumption dates, an appropriate choice of v in this case is

Y(tn) = 7" D(t,).

max

where 7% is [, ... ] with 7 = max;ez, T .-

Proof. Given no trade in the asset market, each individual’s net consumption must
satisfy c'(t,) — €'(t,) = 75D(t,) < 7#™*D(t,). When c'(t,) — €'(t,) > 0, then
Aty) — €' (tn) <3, (¢(ty) — €'(tn)) = TsD(t,) < T™*>D(t,,). O

Loosely speaking, in economies populated with investors who have a high propen-
sity to consume endowments at every date, it will be harder to generate bubbles.
Thus economies which generate bubbles should be associated with investors who have
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a low propensity to consume endowments, perhaps due to precautionary savings, in
a certain sense. This is a feature present in our examples in Section 5.

In general, however, whether or not the value of the aggregate endowment is fi-
nite, there is no trade, or individuals optimally consume more than their endowment
is determined endogenously within the equilibrium. For an economy with a uniformly
bounded number of consumption dates, we have shown there are no bubbles on posi-
tive net supply assets regardless of whether these conditions hold. When the number
of consumption dates is not uniformly bounded, the assumption is often made that
the present value is finite (see, e.g., Santos and Woodford (1997) and Loewenstein

and Willard (2000Db)).

5 Example

5.1 Positive Net Supply Asset with an Equilibrium Bubble

We now present an example of an equilibrium in which the price of a positive net
supply asset has a bubble. The purpose of the example is to illustrate the importance
of the number of consumption dates. In the example, the number of consumption
dates is finite almost surely, but is not uniformly bounded across states. Otherwise,
the critical economic quantities are uniformly bounded: The asset’s price is uniformly
bounded; therefore, so is the bubble on its price. The bubble has a finite lifespan.
Consumption and private endowments are also uniformly bounded. All investors
prefer more consumption to less, and choose the lowest cost portfolio to finance their
net consumption. The lack of a uniform bound on the number of consumption dates
causes Condition 4.1 to be violated, so consumption net of endowments cannot be
superreplicated by a finite-cost portfolio in this example.!°

The financial market consists of two assets, one net unit of a “stock” that pays
only a liquidating dividend of D(T") = 3/2 at date T and zero net units of a locally
riskless bond. Their prices are S and B, and continuous trade is permitted over
the deterministic time interval [0,7]. Uncertainty is described by two standard and
independent Brownian motion processes Z; and Z,.

The consumption dates constructed from a sequence of stopping times we now
define. Define an exponential local martingale n by

o0 =0 (3 [+ [ veaz).

where 1) is some given deterministic process having the properties

(Vt € [0,7)) /0 Y*(s)ds < oo and /0 YA(t)dt = 0o

10Some of the mathematical constructs for our example are similar to Delbaen and Schachermayer
(1998).
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almost surely. Note 7 is independent of Z5. The Novikov condition ensures E[n(t)] = 1
for all t € [0,T); however, n(7T) = 0 almost surely and 7 is not a martingale. Define
the stopping time 7 by

1
7 = inf {t €[0,7] : n(t) = 5}
Notice P(t < T) = 1 since 7 is continuous and n(7") = 0. Now let {Z;} be any
increasing sequence of stopping times dependent solely on Z, (independent of Z;)
with the properties

(Vi=1,...,00)(Vt € [0,T]) P(E; <t)>0and P(Z;, <T) | 0asi— oco. (5.36)

Let N be the random number defined by inf{i : Z; < 7} 4+ 1 if the infimum exists or
by zero otherwise. The properties in (5.36) ensure N is well-defined, satisfies N > 1,
and is finite almost surely but not uniformly bounded. The consumption dates along
a given path w in our example are ¢} (w) = Z1(w) AT(W),..., t;(w) = Ej(w) AT(w), ...,
tNw) (W) = T(W), tywy+1(w) =T

We use these consumption dates as the basis of a continuous-time overlapping
generations model (Samuelson, 1958). A single representative investor represents
each generation. The first, “generation 0,” is endowed with one share of stock and
participates in the financial market until the stopping time 1, when it must consume
from its financial wealth and depart from the economy. Any subsequent generation i >
1 arrives with the endowment

11

“T 2wy

and may trade until ¢;, 1, at which time it must consume from its financial wealth and
depart from the economy. This process repeats with generation ¢ + 1 until ¢;,; = 7.
The generation arriving at 7 is the last, receives the endowment e, = % + #(T) = %,
and consumes from its financial wealth at time 7. The economy then ends. No
generation may participate in the economy before the generation arrives or after it
departs. The number of generations born along a given path w is N(w) < oo, and
the total number of consumption dates is N 4 1. Our construction ensures N + 1, the
number of consumption dates and the number of generations, is finite almost surely
but is not bounded by a constant.

Here is generation ¢’s choice problem.

Choice Problem 5.1 (Generation i’s Choice Problem). On the time interval [t;,t;11],
generation i chooses a portfolio (1%, %) to maximize its expected utility

By, {log (Ci(tm) - %)} :

Wits) = ei, dW(t) = mp(O)dB(E) + T5(1)AS(t) + 75(T)D(T) Lmry, Wiltisr) > ¢ (tira)

subject to
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and (Vt € [0, T]) W(t) > 0, P-almost surely. Expected utility equals minus infinity if
P(Ci(ti_;,_l) < %) > 0.

The preferences of each generation require it to have wealth in excess of 1/2 at its
departure to avoid negative infinite utility. These preferences are meant to capture
the spirit of “safety-first rules” (Roy, 1952).1 Any generation born at time ¢; < 7
is uncertain whether it is the next to last generation, but generation 7 knows it will
be the last. In our example, no generation can hedge its departure time using the
financial assets. The nonnegative wealth constraint serves to make doubling strategies
infeasible; our results would be the same if negative wealth were bounded by any
exogenous or endogenous negative number.

We prove below that an equilibrium price system for this example is S(T)) =0

S(t) = % + Wl/\ﬂ and B(t) = 1. (5.37)
Note S(t;) = ¢; for all i < N and limy_¢ S(¢t) = D(T) = 2. This equilibrium stock
price exceeds the lowest cost of replicating its terminal (and only) dividend of 3/2.
Thus the stock has a bubble according to Definition 3.1, even though it is in positive
net supply.'? To see this, note that the initial stock price is 1. But with initial
investment of 3/4, borrowing 3/4 at the locally riskless rate and buying 3/2 units of
the stock also pays 3/2 at time 7" while maintaining nonnegative wealth of 3/(47(t)).
No generation ¢« < N switches to the cheaper strategy because of the risk of needing
to liquidate its portfolio prior to time 7 (switching would yield a positive probability
of wealth falling below 3 and negative infinite expected utility)."?

Proposition 4.1 implies Condition 4.1 is violated. Consistent with Proposition A.3,
each generation ¢ finances its consumption ¢'(t;11) = S(t;41) at the lowest possible
cost. Consistent with Theorem 4.1 there is no local asset pricing bubble on the stock.
Our proof below shows there is a v* for which p* (¢)S(t) is a martingale during the
generation ¢’s lifetime [t;,;41], yet for all v € V the process p”(t)S(t) is strictly a
nonnegative local martingale (a supermartingale) over the intervals [¢;, 7] and [t;, T
when ¢ < N. Thus a generation born at time ¢; < 7 that would happen to know for
certain it would survive until 7 would not optimally hold the stock, but no generation
in our example has this knowledge.

' The preferences also reflect aspects of goal-setting for intolerance for declines in standard of living
(Dybvig, 1995), portfolio insurance (Leland, 1980; Grossman and Zhou, 1996), life-cycle concerns
(Mariger, 1987), regulations requiring certain institutions to maintain liquid reserves, and mandated
spending rules for university endowments (Dybvig, 1999).

121f we interpret B(T) as a liquidating dividend, there is also a bond bubble, but this is less
interesting because the bond is in zero net supply.

13Consistent with Proposition A.2, the ability to replicate the dividend at a lower cost implies
S(0) > sup, ¢y E[p”(T)D(T)]. To see this, first note that p°(f) = n(t A 7), and that each p” has the
form

#(1) = (1) exp (—§ / " (s)ds / t V(S)dZ2(S)) . (5.38)

In particular, p°(T) = 1/2, so E[p”(T)] < 1/2. Moreover, 1 = S(0) >
v € V, which implies S(0) > sup, .y E[p”(T)D(T)).

PN

> E[p*(T)D(T)] for all
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The remainder of this section proves the equilibrium for the example.

Proof of the Equilibrium: Our candidate equilibrium prices are (5.37), and the candi-
date equilibrium strategy of each generation consists of buying and holding the stock
and consuming its financial wealth. Clearly all markets clear given these strategies,
so the remaining issue is whether the strategies maximize expected utility given the
candidate equilibrium prices. This is clearly true for the generation which arrives at
time 7 so what remains is to show this for earlier generations.

We prove this for a given generation ¢ that arrives at time ¢; < 7 and departs
at time t;4; < 7. The proof has two steps. The first step shows that S(t;) is the
lowest cost of obtaining the payout of S(¢;11), which is necessary for the candidate
strategy of buying and holding the stock to be optimal. The second step shows S(t;41)
provides the highest expected utility for generation ¢ given its budget constraint.

To perform the first step, we show there is a v* € V' such that

P (ti)

Ey | =7 St 1)] = S(t),
t { pr(ti) ’

for t; < 7 (see Proposition A.1). Recall that 7 and =;,; are independent. In the

equilibrium, p°(¢) = n(t), which is independent of =;,;. Now define the process M by

P(Ei41 <T)

M(t) =
() P(Ei+1<T)’

where P, denotes the time-t conditional probability. This M has the following prop-
erties: it is a bounded martingale with M (¢) > 0 for ¢t € [0,7'), its terminal value
M(T) is either zero or 1/P(Z;41 < T), and M(t) is independent of both S(¢) and
p°(t) at any time t € [0, T]. These properties imply the process M p° is a nonnegative
local martingale and strictly positive prior to time 7. It also follows that Mp°S is a
nonnegative local martingale. By the Martingale Representation Theorem, there is
a v* € V such that p* (t) = M(t)p°(t) on the random interval [0, 7] (Protter, 1992,
Theorem 1V.3.42). Moreover, direct computation shows

*

Elp” (Eii AT)S(Ei1 AT)] = E[M(Zi11 AT)p°(Bis1 AT)S(Ei1 AT)]
= E[M(Zi AT)p*(Zp1 AT)S(Eipa AT)] = E[M(T)p*(Zi1 AT)S(Zisa AT)]
1

=—— F°Ei AT)S(Eip1 A7)z,
P(Ei+1 <T> [p( +1 7_) ( +1 T) {~z+1<T}]

== PEin<T)+ ;EN=Zin ANT)l=,
P(Ez‘+1<T){2 (Ein <T) + 5 EMEm A7)z, <T}]}

1 1 1 T
= pE. < 2 G <T)+5 [ Bl P(Si41 € dt)dt b = 1.
P(E,-+1<T){2 (Eir1 < )+2/0 [n(t AT)|P(Zi41 € dt) }

Since p* (0)S(0) = 1, this shows p”" S is a martingale on the interval [0,Z; 11 AT], so it
is also a martingale on generation i’s lifetime [¢;,¢;,1] on t; < 7. By Proposition A.1,
there is no feasible trading strategy that provides a higher payoff than S(t;.1) at a
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lower cost than S(t;). We remark that both p*" B and hence p”" are both martingales
on [0,Z;11 A 7] because 2p”" S > p¥" B = p*" > 0.

The second step shows S(t;41) maximizes generation i’s expected utility given its
endowment of e; = S(t;). We will use the well-known inequality for concave functions:
u(z) —u(y) > v (x)(z—y). In our case, u(z) = log(x —1/2). For any trading strategy
that satisfies W (t;41) > 1/2, we have W (t) > 1/2 for t € [t;,t;11].** Tt follows that
for any feasible trading strategy,

1 1
L, [p0<ti+1> (W(ti—i—l) - 5)} < Po(ti)(ei — 5)
Direct calculation shows equality holds when W (t;11) = S(t;+1). Given the strat-
egy of buying and holding the stock, generation i’s marginal utility is «/(S(t;11)) =
p°(tiv1)/2. Thus

By [u(S(tiv1))] — By [u(W (tis1))]
1

> By, {Ul(s(tiﬂ)) (S(tm) —5~ <W(ti+1) - %))1 >0,

so the equilibrium strategy does indeed maximize generation ¢’s utility. O]

5.2 Long Lived Investor

We now show how a failure of Condition 4.1 which allows bubbles can also allow long
lived investor equilibrium wealth constraints to fail the transverality condition. We
maintain all the previous assumptions of the model except we now assume the stock
pays a liquidating dividend of % + M at date T where 0 < M < % When M is
changed, we are changing the aggregate endowment of the economy. If there is no
other change in the model, then the equilibrium prices are the same except there will
be a jump in the bond price and the stock price at time 7. The stock price jumps
from % to % + M and to rule out arbitrage, the bond price must jump from 1 to
1+ % The process p°(t) would also jump at time 7 from % to g +iM. These prices
would then remain constant at these levels until time 7. Although formally, we did
not allow for this kind of jumps in our theoretical model, extensions to cover this
are fairly minor. Since this is not our main focus, we will skip the formal derivation.
Nevertheless, it is easy to see that p¥(t)B(t) and p”(t)S(t) are still nonnegative local
martingales.

We now introduce a long lived investor with no initial wealth and no endowments
who solves the following choice problem. This long lived investor might be thought of
as an institution like a hedge fund which does not require immediate liquidity until
time 7" who can sustain mark to market losses as long as these losses do not exceed

the exogenously specified amount M.

4 This follows from the following observations: p*” ()W (t) is a nonnegative local martingale, thus

a supermartingale. Therefore W (t) > Et[pi)uaitét*)l)W(tiH)] >1/2.
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Choice Problem 5.2 (Long Lived Investor Choice Problem). Choose a portfolio

(k. wk) to maximize its expected utility

E[u (CL(T))] ,
where u : [0,00) — R is concave and strictly increasing, subject to
WE(0) =0, dW"(t) = T (t)dB(t) + 75 (t)dS(t) + 75(T)D(T)1gy=ry, WH(T) > M(T) >0

and (Yt € [0,T]) WE(t) > al(t), P-almost surely where for t € [0,T) a*(t) =
—~MB(t), a®(T) = 0. This corresponds to the process g*(t;) = 0 fori < N + 1,
gH(T) = ~MB(T).

The equilibrium discussed above is no longer an equilibrium when we add this
long lived investor and 0 < M. To see this, notice that the long lived investor can at
time 0 buy M share of the stock and finance this purchase by selling M share of the
bond. This portfolio has initial cost 0, and maintains wealth greater than or equal to
—MB(t), and provides a payoff of M(3 + M) — M(1+ 2%) =4 — MT2 This payoff
is strictly positive if 0 < M < % This would be inconsistent with market clearing.

There is an equilibrium when 0 < M < %, however. Let m = 2]%}11. Asset prices
are given by B(t) =1, S(t) = ﬁ - =+ m for t <T and S(T) = 0 (When
M = 0 these are the same as the previous section). The process p°(t) is given by
n(t) as in the last section. Given these prices, it can be shown the long lived investor
optimally chooses the portfolio 75(t) = —7 and 75(t) = =, this portfolio obeys the
wealth constraint, and terminal consumption is given by C*(T') = M.

The short lived investors optimally choose 7% (¢) = 7 and 75 = 1 — 7. Given these
choices, the wealth process for investor i satisfies W'(t;) = e; and W'(t;11) = €;41.
Our previous section analysis can be used to show this is optimal for each short lived
investor(the process p°, the endowments, and consumption choices are identical to
those in the previous section).

Given these choices, markets obviously clear for ¢ < N + 1. This last generation
consumes % at time 7" and the long lived investor consumes M at time 7' so markets
clear at time T as well. In this equilibrium, the stock price satisfies

3 M

$(0) =1z sup Bp"(T)D(T)] = 7+

so the stock price has a long lived bubble when M < % but when M = % the stock
price does not have a bubble. The bond price also has a bubble. Moreover, the long
lived investor’s wealth constraint does not satisfy a transversality constraint when
M > 0 since

—aH(0) = M > sup Bl (T)g (1)) = swp B[ (T)M] = = (53)

This is inconsistent with the conclusions of Proposition 4.1. As in our previous section,
Condition 4.1 is violated.
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A Appendix: Proofs

A.1 Preliminary Results

In this section we collect several results which are used extensively in our analysis. The
first result derives a local martingale property of wealth and bounds on negative wealth.
The subsequent results concern the lowest cost of replicating a stream of cash flows given a
lower bound on wealth.

Several of our proofs use the following lemma regarding the local martingale property
of wealth and constraints on negative wealth.

Lemma A.1. Let W be a wealth process which satisfies (2.1). Then

N+1

P (W (1) + /(0 ) P! ()dC(s) = Y p¥(t)e' (t) 1, <ny

Jj=1

is a local martingale for every v € V. In addition, for any bound on negative wealth a*
satisfying Assumption 2.2, for given A € F,, with E[p”(si)a (gl)l{A}] < oo then

N+1
p ( ) ( 1{A} + Z P t] tj)l{Aﬂ{§z<tJ<t}}

7=1
s a local martingale fort > ;.
Proof. Let v € V be given. Ito’s Lemma implies

N+1

pOwe+ [ o DICACIE

= W (0) +/0 P (s) (ﬁs(s)a(s) —W(s)(0'(s) + I/(S)))dZ(S), (A.1)

where the K-dimensional row vector g represents the dollar investments in the K risky
assets (i.e., 7(t) = (msk(t)Sk(t))k=1,.K). (For a similar calculation, see, for example,
Loewenstein and Willard (2000b).) The integral in (A.1) is locally bounded, so it is a
local martingale (Karatzas and Shreve, 1988, Chapter 3). Assumption 2.2 and Ito’s lemma
also imply

N+1
+ Z p {§z<t <t} -

p)ae)+ [ 06 (aso)0(s) ~d(F() +1())az(e). (A2)

where the K-dimensional row vector ag represents the dollar investments in the K risky
assets (i.e., ag(t) = (ag(t)Sk(t))k=1,..x). The integral in (A.2) is locally bounded, so it
is a local martingale (Karatzas and Shreve, 1988, Chapter 3). Thus if for given A € F,,
Elp”(si)a’(si)1gay] < oo then p¥(t)a’(t)1ay + Zjvﬁl p”(t5)9(t5)1gang<ty<tyy Is a local
martingale for t > g;. O
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Proposition A.1. Given Assumption 3.2 and a nonpositive process a describing a bound on
negative wealth that satisfies Assumption 2.2 with ¢; = 0, and a nonnegative progressively
measurable process v with vy(t;) > g(t;), a Fi a7 measurable random wvariable X which
satisfies X > a(t, AT), and

nAN+1
swp B[ 3 () (3(85) ~ 9(4) + ¢ (0a AT) (X —alty AT))] =w = a(0). (A3
ve j=1

then there is a trading strategy with wealth W and W(0) = w, W(t, NT) > X, P-
almost surely, and W (t) > a(t) pathwise on [0,t, A T] which satisfies (2.1) with C(t) >
Zo<tjgt7(tj) for0<t<t, AT and e’ = 0. Moreover, for any stopping time x < t, AT,
let W(x) be defined by

W(x) =

By |30 07 () (v(t) — 9(t) 1t 5) + 07 (tn AT) (X = alty A T))}
p”(X)

a(x) + essup,cy
(A4)

where essup denotes essential supremum.'® Then then there is a trading strategy with wealth
at time x equal to W(x), W(t, NT) > X, P-almost surely, and W (t) > a(t) pathwise
on [x,tn A T| which satisfies (2.2) on [x,tn, A T] with C(t) — C(x) > Zx<tj§t'7(tj) for
0<t<ty, AT and e = 0.

Proof of Proposition A.1. For t <t, AT define
: E [>T 0 () (7(t)) — 9(8)) Ly + 07 (tn AT) (X — altn AT))]
W (t) = essup,cy .
p (1)
(A.5)

and let 7 = inf{t < t, AT|W(t) = 0}. For any v € V, there is a modification of p” (tAT)W (tA
)+ 2q,<insy P () (7(t5) — g(t;)) that is a RCLL supermartingale, which we continue

to denote by p”(t)W(t) (the proof is virtually identical to Karatzas and Shreve (1998,
Theorem 5.6.5)!6). The Doob-Meyer decomposition and the Martingale Representation
Theorem imply
tAT
PUNTIWEAT) 4 3 P (0 (elty) — alt) = W(O0) + [ v ()d2(s) ~ A°(2 A ),
0<t; <tAT

(A.6)

I5Essential supremum describes the least upper bound for a set of random variables. The essential
supremum of a family of measurable functions {gx, A € A} is denoted by g = essup,c, gx and is
defined by (i) g is measurable, (ii) g > gy for all A € A, and (iii) for any h satisfying (i) and (ii),
h > g (Chow and Teicher (1997)). In our setting, a given set over which we take essential supremum
will be directed upwards (so the essential supremum over V can be approximated by an increasing
sequence of elements from the set under consideration).

160bserve for a fixed p” we have

. Eopr [N 02 (1) (v(t5) — 9(t)) L ay + 07 (bn AT) (X — a(tn AT
1 i BT 00 06 47—t 1)

o B[S0 0 (0) (0(6) = 9(3)) Lsza oy + 07 (s ATIW (s A T)]
- pr(ENAT) '
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where " is progressively measurable and A" is a nondecreasing finite-variation process.
Calculations virtually identical to those by Karatzas and Shreve (1998, pages 217-218)
show both

— w”(t) T /
o(t) = D) + W)@ (t) +v(t) on t <7 (A.7)
and dAy( ) tAT
C(tnT) = /(OMT] s ), o(s)v'(s)ds (A.8)

are independent of v. Taking v = 0 shows C' is non-decreasing. We now show there is a
progressively measurable trading strategy 7g satisfying 7g(t)o(t) = ¢(t), using arguments
similar to those of Karatzas and Shreve (1998, page 219). We first note (A.8) implies

[ O _ean [ eis 20 (A.9)
(0,tAT] py<8) 0

for all ¢t € [0,7] because A" is nondecreasing. We show ¢'(t) is in the range of o’(t) for
all ¢t € [0,7]. To this end, we first choose ©(t) to be the process defined by the orthogonal
projection of ¢'(t) onto the null space of o(t) at each time ¢t € [0,7]. The process ¥
is progressively measurable (Karatzas and Shreve, 1998, Corollary 1.4.5), and it satisfies
o/ = 0. Thus v0 € V for all real valued numbers . Substituting © into the second integral
in (A.9), we get ng/w |7(s)||?ds. Assuming 7 > 0 (otherwise there is nothing to prove),
this integral would be nonzero if both © and v are. Choosing v to be sufficiently negative
would make the left-hand quantity in (A.9) negative, a contradiction. Thus © must in fact
be identically zero, which implies ¢/(t) is in the range of o/(¢) for Lebesgue x P all t € [0, 7]
(equivalently, ¢(t) is in the orthogonal complement of the nullspace of o(t)). The existence
of a progressively measurable g satisfying 7g(t)o(t) = ¢(t) then follows from Karatzas and
Shreve (1998, Lemma 1.4.7).
Setting ¥ = 0 in (A.6) and (A.7), we have

PPUEANTIWEAT) + Y p(t5) (v(t) — g(ty))
{t;<t}

:W®+ATﬁ®W@%@—W®%WM@—/ P(s)dC(s). (A.10)

Comparing (A.10) with (A.1), we see W is a nonnegative wealth process that starts with
W(0) = w — a(0), the dollar investment in the risky assets is given by the 1 x K row
vector g , invests W — #gly in the bond, with cumulative consumption C(¢) = C(t) +
Zo<tj§t v(t;) — g(t;) for t <t, AT, " = 0 and has terminal payoff W(7) = X — a(t, A T).

Let W = W+a. Then W > a and corresponds to a wealth process which invests 7g+ag
in the risky assets (where &g represents the 1 x K row vector of dollar amounts invested in

which implies

PPANTIWEAT + D () (v(ty) = 9(t;)

0<t; <tAT

> Ene[ Y 07(t) () = 9(t5) + 07 (s AT)W (s A T)]

0<t; <sAT
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risky assets in the portfolio describing the wealth constraint), W+a—wglg —agly in the
bond, with cumulative consumption C(t) = C(t) + Zo<tj < (ty) for t <t, AT, with el =
and has terminal payoff W (7) = X. By construction this portfolio requires initial wealth

nAN—+1
w = a(0) + SugE[ D At () = 9(t) + (b AT) (X — alty AT))].
ve j=1

and by construction

By [0 07 (1) (7(85) = 901 a,5x0) + 07 (b AT)(X = atn AT))|

W (x) = a(x)+essup, ¢y p¥(x)

O]

Proposition A.2. Given a wealth constraint a'(t) which satisfies Assumption 2.2 with
G = 0, consider a nonnegative progressively measurable process ~v with

N+1
ISjlélgE Z pY () < 00. (A.11)
Given Assumption 8.2, and a stopping time x < T define
B[S0 0 (0) (115) = 6(03)) Lt 5
" (x)

(A.12)

(t)

W(x) = a’(x) + essup, ¢y

Then then there is a trading strategy with wealth at time x equal to W(x), W(t) > a
pathwise on [x,t, AT] for all n, which satisfies (2.2) on [x,tn AT} for all n, with C(t) —
C(x) > Zx<tjgt7(tj) for0 <t <t, AT and all n, and e* = 0.

Proof of Proposition A.2. For each n let
By, [S51 07 (85) (115) = 9(t3)) Lt 0,
p¥ (tn)

X, = essup,¢y Lit, <1}

and let
By [0 0 (45) (115) = 9(6)) Lg, 5y + 07 (tn AT) X

p¥(t)
Then as in the proof of Proposition A.1 Statement 2 ( set a = g = 0 for the a and g that
appear there and let the v which appears there to be v — ¢g.) W™ is a wealth process with
a corresponding portfolio 7" = |7}, 7g] which satisfies (2.1) with e! = 0, with cumulative
consumption C(t) = C(t) + > gy, <¢ ¥(t5) — g(t;) for t <t AT, W"(tn ANT) = X, and
maintains W"(t) > 0.

Arguments similar to those in Karatzas and Shreve (1998, Theorem 5.6.5) give the
equation of dynamic programming for t < ¢, AT

Ey |5 07(t5) (1(t) = 9(85)) Lty + 7 (tn A T)Xn}
p¥(t)
By [0 07 (1) (/1) = 9(t)) 1t 5]
p¥(t)

W"™(t) = essup,cy

W™(t) = essup,cy

= essup,¢y
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Now let mp(t) = > 00 T, <t<t,ary and ws(t) = 202, Trg(t)]‘{tnflgt<fn/\T}’
This strategy then satisfies (2.1) with e! = 0, with cumulative consumption C(t) = C(t) +
Zo<tj§t Y(t;) —g(t;) for t < t, AT for all n, with W (t) > 0 on [0,t, AT] for all n. Moreover,

letting W (t) = np(t)B(t) + 75(t)S(t)

i By |00 07 (45) (1(15) = 9(6) Lt 50y
W (t) = essup,cy (D)

Now observe the strategy W (t) = W (t)+a(t) satisfies (2.1) with e’ = 0, with cumulative
consumption C(t) = C(t) + Zo<tj§t7(tj) for t < t, AT for all n, with W(t) > a(t) on
[0,t, AT for all n. We have

B[S0 07(65) (1(15) = 9(83)) 11,50
p¥(t)

W (t) = a(t) + essup,¢cy

A.2 Proofs for Section 3.1

Proof of Proposition 3.1. Given m5(0) = 0, 77%(0) =0, e’ = 0, the budget equation at time
0 implies W (0) = —C(0). The nonegative wealth constraint implies W (0) > 0, so it follows
W(0) = C(0) = 0. Lemma A.1 with v = 0 and ¢’ = 0 implies for such a strategy the
process p°(t)W (t) + f(O,t] p°(s)dC(s) is a local martingale. It is also nonnegative so it is a
supermartingale. Therefore

E / P’(s)dC(s)| < E / P°(8)dC(s) + pP(ta ANT)W (t, AT)| < W(0) =0
(0,tn AT (0,tn AT
(A.13)
Since p°(t) > 0 and C is nondecreasing this implies C(t) = 0 for t € [0,t, A T for all n
almost surely. O

Proof of Proposition 3.2. The proof follows directly from Proposition A.1: take a =0, X =
S (tnAT), y(tj) = Di(tj), and w = sup,ep F Z;ﬁ{vﬂ p”(t;)Dy(t;) + p¥(tn NT)S*(tn NT)|.
O

Proof of Proposition 3.6. Given that a satisfies Assumption 2.2, the process —p”(t)a’(t) —
Zj\zl P (t5)g'(tj) (g, <t,<¢y is a nonnegative local martingale on ¢; <t and hence a super-
martingale for all v € V from Lemma A.1.

Given inequality (3.20), consider the payout at t, A ;

. PP (i) (—a'(si)1gay — essup,eyp B, [—%ai(tn ATi)liay])
X = >0
PO (tn A Ti)
Because 0
E. [ﬂ (Cz‘)PO(tn AT@')] <1
p¥ ()P0 (tn A i)
for all v € V, we have
sup E[p" (tn A T3) (X — at(ty, A 7i)) 1{,4}] < supE[—p”(q)ai(gi)l{A}] (A.14)

vey vey
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Let v(t;) = —g'(t;) and X = X — a'(t, A 7;)1(4y in Proposition A.1 and set the a
and g in the proposition to be identically 0. This then implies implies there is a trading
strategy that requires initial wealth W (0) < sup,cy E[—p”(si)a'(si)1 3], satisfies 2.1 with
e! = 0, with cumulative consumption C(t) > Z”ANH 9" (tj)1{1,<t}, and terminal payout

W (t, A7) > X >0, and satisfies W (t) > 0. This wealth process has value

i By |5 0" (13)g (6 Lt 50y + 0" (b A T)X]
W (t) = essup,cy D)

For t € [g;,t, A T] define W (t) = W (t) + a’(t). This wealth process then requires no initial
wealth, satisfies (2.1) with e’ = 0 and C(t) > 0, maintains W (t) > a’(t) and has terminal

(A.15)

payoff W(t, NT) = X% > 0. O
Proof of Proposition 3.5. Let 0 < b < 1 and 7(t;) = bjﬁtj) > 0 for t; <T. Observe
N+1 1
p | 2 )| < 0 < o0

Then Proposition A.2 indicates if we define

N+1 -
W(0) = (0)+SugE > o) (v(t) = 4'(t)))
ve j=1

Then there exists a trading strategy, a cumulative consumption process C(t) > Z AR 'y( )Lt <tys

such that the wealth process satifies 2.1 and maintains W (t) > a‘(t) for t € [0,t, A T] and
all n. Observe the initial wealth required for this strategy satisfies

N+1 N+1

. 1 . y )
W(0) = a'(0)+sup E | Y p¥(t5) (+(t;) — ¢'(85)) | < 15 t¢' (0)+sup B > A (t)d' ()
vey j=1 - vey j=1
(A.16)
Given the inequality in (3.18) choose b so the right hand side is is zero. Then this strategy
satisfies the conditions in the Proposition. O

A.3 Proofs for Section 4
A.3.1 Proof of Theorem 4.1

We now describe the economic steps of our proof of Theorem 4.1 (the more mathematical
details appear in Section A.3.3). Our assumption that all investors prefer more to less
implies they invest no more than necessary to finance consumption, as we now show.

Proposition A.3. Assume an equilibrium exists with Assumptions 2.1 and 3.2. Given
either an exogenous constraint a' on negative wealth in Problem 2.1 or the equilibrium
endogenous constraint a' in Problem 2.2, the wealth of each investor i € Tp_1 on tn,_1 < T
satisfies for each A € Fy,_,N{i € T,_1} with sup,cy Elp” (tp—1) (W (tn—1)—a" (tn-1))1{a}] <

o

E, [pu(tn)(Wi,cum(tn) _ ai,cum(tn))l{A}]

(Wit) — ai(t))l{A} = essup,cy )

(A.17)

36



where

Wi’cum(tn) = Wl(tn) + Ci(tn) - ei(tn)a
ai,cum<tn) — ai(tn) —i—gi(tn),
and essup denotes essential supremum.

Proof. See Appendix A.3.3. O

Remark A.l. Since our assumptions only allow us to assume W' and a' are finite almost
surely we have to introduce the subset A to make sure the conditional expectations are well
defined. This only causes minor difficulty however. There exists Ay with |Jy; Ay = Q2
such that the statements in the Proposition hold on each Aps. For example, for M > 0, let
Anr = {w]p (1) (W' (tn1) — a'(ta-1)) = M} ({i € Tp-1}.

Given that monotone investors finance their consumption at the lowest cost, we now
use market clearing and the constraints on negative wealth to establish an upper bound
on each investor’s wealth. These upper bounds prevent aggregate financial wealth from
growing large enough to support bubbles on assets that contribute to it (those in positive
net supply).

Let Ay € Fi, .y ﬂ{tn—l < T} with E[p”(tn_1) Ziel—nfl Wz(tn_l) _az(tn—l)l{AM}] < 00
and |J,; Am = Q. Because every investor’s equilibrium financial wealth satisfies (A.17),
clearing the consumption market bounds the wealth for every investor ¢ € Z,_1 by the
largest possible value of the aggregate dividends 7wgD(t,) plus the aggregate financial
wealth 755 (t,,) plus the absolute value of the aggregate allowable terminal negative wealth
— > iez,_, @' (tn) + ¢'(tn). This follows from the following inequalities:

W ()1 Ay ntieT, 11y < V(L) — a" ()11, OfieTo 1)
Ey [p¥ (tn) (W5 () — a™"™(£)) L a O fi€To-11})

= essup,cy s
< essup,c, E, [pV (tn) ZieIn,l (Wi,cum (tn) — ai,cum(tn)) 1{AM ﬂ{iEInq}}}
p(t)
Et [py(tn) (ﬁssex(t”) + 7T‘-Sl)(tn) - ZieInﬂ (ai(tn) + gl(tn))) 1{AM m{iEIn—l}}]
= essup,¢y F0 |

(A.18)

Now we show that clearing the asset market bounds aggregate financial wealth in a
manner that rules out bubbles on positive net supply assets. This bound relies on our
assumption that the number of investors participating in the market at any time is no more
than I. Specifically, we have

0< Y (W) —d' () liayy = (@sS™(6) = D a'(t)la,

1€Ln—1 €L, 1

Eq | (tn) (RS (tn) + T D(tn) = Yiez, (@' (ta) + 9'(ta)) Ly
< I X essup,cy .

p¥(t)
(A.19)

We state a useful mathematical result.
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Lemma A.2. Let A € F, ,({tn-1 < T} and X be a nonnegative process such that
p” X1y 4y is a local martingale on [t,—1,t,] for all v € V. Suppose

By [p¥(ta) AL ay]

P (1)
for some nonnegative Fy, measurable random variable A with sup,,cy, Elp” (tn)Al{a;] < co.
Then for t € [tn—1,ty]

X(t) < essup,ey

Ey [p¥(tn) X (tn)1(4}]
P (1) ’
and there exists a v* € V such that p”" (£)X (t)1gay is a martingale on [tn_1,ty).
Proof. See Appendix A.3.3. O

X (t)1{ay = essup,ey

Taking
A =T x (®s(D(tn) +5%(tn)) — Y (a'(tn) + g (tn))) 14,1}
ieIn—l
in Lemma A.2. Let X (t) = (75S™(t)+ s D(tn)1fs—t,1 = sez, , (@' () + 9" (tn)1fi=t,}) ) 1 A0}
Lemma A.2 then says on t, 1 <t <t,

(RgS™(t) — D d'(t))1{a,,

P€Ln—1

E; [p”(tn)(frs(D(tn) +5%(tn) = Yiez, (@' (tn) + gi(tn)))l{AM}}
p¥(t) '

= essup,cy (A.20)

Since

E, [py(tn)((Dk(tn) + S]ix(tn))l{AM}]
p(t)

B, [—py(tn)(gi(tn) + ai(tn))l{AM}]
P (t)

S’}zx(t)l{AM} > essup,cy

—ai(t)l{AM} > essup,ey
then (A.20) holds for t € [t,,—1,ty) only if

Ey [p" (t2) ((Dr(tn) + S7*(tn)) 1{a,]
p¥(t)

S,‘;X(t)l{AM} = essup,cy

whenever 7, > 0 and
Ey [_py(tn)(gi(tn) + ai(tn))l{AM}]
p(t)
for every equilibrium a’ and ¢ € Z,,_;. Lemma A.2 also implies there exists a v* € V such
that for t € [t,—1,tn)

—ai(t)l{AM} = essup,cy

Ep [p7" (tn) (Dr(tn) + SP*(tn))11a,,3]
p¥(t)

SO LAy =
whenever 7 > 0 and

B [p7 (ta) (9" (tn) + @' ()11 4,,3]
P (t)

OIS

for every equilibrium a’ and i € Z,,_;.
Theorem 4.1 then follows from these observations and the fact |J,; Ay = Q.
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A.3.2 Proof of Proposition 4.1

We will assume P{N > n} > 0 for all n since otherwise Theorem 4.1 implies the result. We
show in Proposition A.2 that Condition 4.1 implies there is a finite-cost portfolio with pay-
outs that superreplicate the payout stream {~1,...}. This portfolio maintains nonnegative
wealth.

First observe Theorem 4.1 implies (since each short lived investor participates over a uni-
formly bounded number of consumption dates) each short lived investor’s wealth constraint
must satisfy

B [(S00 07 ()9 () genyy ) 1))
p¥ (i)

—ai(gi)l{A} = essup,¢cy (A.21)

on each A € F, with sup,cy, E[—p"(si)a’(s;)1{ay] < oo. For these investors, financial wealth
must satisfy
N+1
B[S0 07 ()7 (t) 1,5
p(t)

because, if this inequality did not hold, given Assumption 2.1 part 3, the investor would
derive higher utility by appropriately switching to the superreplicating strategy for v (see
Proposition A.2) which maintains nonnegative wealth and consuming more than y + ¢’ and,
consequently, more than the equilibrium consumption C*.

Each long lived investor who prefers more to less finances consumption net of endow-
ments at its lowest possible cost, so each long lived investor i’s equilibrium financial wealth

W(t) < essup,cy (A.22)

must satisfy

N+1 i
B [S000 0 () (1(8) — 6 (1))
P (t)
because, if this inequality did not hold, the investor would derive higher utility by appropri-
ately switching to the superreplicating strategy for v (see Proposition A.2) and consuming
more than v + €' and, consequently, more than the equilibrium consumption C*. Second,

using this for long lived investors, (A.22) for short lived investors, plus market clearing for
the assets implies aggregate financial wealth must be bounded:

7eST(E) - Y ai(t):ZWi(t)— > d()

i,long lived ) i,long lived
N+1 ;
Et {Z] =n+1 P ( )(W(tj) - Zi,long lived gz (tj))}
p(t)

The following result is proved in the Section A.3.3.

Wi(t) — a'(t) < essup, ey

on [tna tn+1)

< I X essup,cy on [tn,tnt1). (A.23)

Lemma A.3. Let X and x be nonnegative progressively measurable stochastic processes
with the properties

1 X(t) =0 ift, =T,
2. pP(tn NTYX (b NT) + Z;Vﬁl p¥(t)z(t;)1{0<t,<ey is a local martingale for allv € V

for all n.
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3. For eachn, there exists av € V such that p” (tAt,) X (tAL, )—l—Z;\Uﬁl p¥ () (t) Lo<t, <tAtn}

is a martingale on [0,t, N T].
4. There exists a nonnegative progressively measurable process v with
N+1
up | 2 ()i ] -

and
Er |00 0 ()3 (50|
p(t)

X (t) < essup,cy

then
By [0 0 (4) () (50|
p¥(t)

X (t) = essup,¢y

and there exists a v* € V such that

E N+L v (4 V(41 bt
- )onst ppu(fj,:) () 1,50

Proof. See Appendix A.3.3. O

For any v € V the process

N+1

P [ 7S - D dl(p) +Zp (t) [ 7sD(t) — D g'(ts) | Ljo<t,<y

i,long lived i,long lived

is a nonnegative local martingale on [0, ¢, A T| for all n. Moreover, Theorem 4.1 implies for
each n, there exists a ¥ € V such that the process

N+1
P | msS) = Y A |+ D0 [ 7D~ Y 6 (1) | Loer,<n)
i,long lived 7j=1 i,long lived

is a martingale on [0, ¢, AT]. In addition, our Assumption 2.1 part 3 and our definition of the
wealth constraints imply 755 (tn) =, 1ong lived @ i(t,) = 0 when t,, = T.. The statements in
the Proposition now follow by setting X () = TsS™(t) =>_; 1ong lived @ Ut), x(t;) = s D(t;) —

Z@long liveq 9 (t5) and A(t;) = I x (v(tj) — Zz‘,long lived gi(tj)> in Lemma A.3.

A.3.3 Auxiliary Results for Sections A.3 and A.3.2

Proof of Proposition A.3. First observe that on the event A (since Zn41 = ) when N < 00)
described in the Proposition t, 1 < T, t, < T, and W5 (¢,) — a>“"™(¢,) > 0. The
last statement follows from Wi(t) > a'(t) so Wi(t,—) > a'(t,—). Since WHU(t,) =
Wi(t,—) and a"“™(t,) = a’(t,—), it follows W (¢, ) — a>“"m(¢,) > 0. For the event A
described in the Proposition, the process p” (£)(W*(t) + ¢ (tn)Lys,y — a'(t)) — g* (tn) L je=t,}
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is a local martingale for t € [t,,—1,t,] for every v € V (see Lemma A.1). The process is also
nonnegative so it is a supermartingale. Thus for ¢ € [t,_1, ty]

By [p¥ (tn) (W5 (t0) — a ™ (tn)) 14y
P (t)
It follows that sup, ey E[p" (£n) (W5 () —a>™ (tn))1a3] < 00. Let X = (W5 (t,,)—
ai’cum(tn))l{A} > 0,9 =0, and a = 0in Proposition A.1. This then yields a trading strategy

and a wealth process, W defined on [0,t, A T] which has a terminal payoff W(t, ANT) > X
and maintains nonnegative wealth. Moreover, for ¢ € [t,,—1,t,)]

(W'(t) — ai(t))l{A} > essup,ey (A.24)

- Ey[p? (tn) (WH™ (t,) — a™" ()1 03]
W(t)l{A} = essup,cy : p[/(t) A

Let W (t) = W(t)+a’(t). Then W (t) > a*(t) and W (t,) > X. Assumption 2.1 then implies
Wit)1gay < W(t)1gay for t € [t,_1,t,] otherwise it is feasible to shift to the strategy
generating W (t,,), invest the surplus wealth and consume more at a future date. Combined
with (A.24) the statement of the Proposition follows.

(A.25)

O]

Proof of Lemma A.2. We first show the assumptions of the lemma imply

E: [p"(T)X (tn)1(4y]
p(7) ’
P-almost surely for all stopping times 7 taking values in [¢,_1,t,]. Proposition A.1 will
then imply X(¢,-1)1g4) is the lowest cost of replicating X (¢,)1;4y with a portfolio that
maintains nonnegative wealth. Lemma A.4 (presented next) will prove the existence of a
v* € V that makes p*” (t) X (t)1{4y a martingale on [t,—1,n].
The process

X(T)l{A} = essup,,

E¢[p” (tn) Mg ay]

p(t)
exists and has an RCLL modification for which p?(t)V*(¢) is an RCLL supermartingale for
any v € V (the proof is virtually identical to Karatzas and Shreve (1998, Theorem 5.6.5)).
Choose a fixed stopping time 7 taking values in [t,—1,t,] and an arbitrary o € V. The
properties of the essential supremum (see Footnote 15) and the Monotone Convergence
Theorem imply, for any € > 0, there is a v¢ € V such that!”

VA(t) = essup,ey

PVS (tn)

E |p”(7) )

Al{A}:| >F [pﬁ(T)VA(T)l{A} — g

17Tf we define B AL
VA(T) = essup,, T[p ( n) A}
p¥(T)

for stopping times 7 € [t,_1,t,] it may differ from VA (7) since, although they agree on constant
stopping times, they are defined differently for stopping times which are not constant. However, we
are using a right continuous modification of V* so the arguments in Karatzas and Shreve (1998,
Remark 5.6.7) can be used to show VA(r) = VA(r) P almost surely.

(A.26)
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Because p** (£)X (t)14y is a nonnegative local martingale on [r,#,], there is an increasing
sequence of stopping times 7 < 7; — ¢, such that lim; .. P{7; = t,} = 1 and such that
the stopped process is a martingale on [, Tj].ls So choosing j large enough,

N Yty 5
E [pV(T)f;,/e((T))Al{Aﬂ{Tj:tn}} +€e> E[p (T)VA(T)l{A}].

The supermartingale property of V* implies

Br [ ()AL= + 07 (VA ) s <i]
P (7) 7

VAT L4 >

so we have
2

v \P (7
e>E {p (1) ,,e( ])) VA(Tj)l{Am{rj«n}}] :

Since VA > X,

o PVE 7y
e>F [p (7) ( ])X(Tj)l{An{rmn}}] :

P (t)

Because 7; reduces the local martingale pf’(T)pye(T)

X (t)1gay on t > 7, we have

p” (75)
P (7)

Pye (tn)
p (1)

< B[P K]

Er [p¥(tn) X (tn)1(4}]
p”(7)

E[p"(1)X (")) =E [PQ(T) X(tn)l{An{TJ—tn}}]JrE [90(7) X(Tj)l{Aﬂ{ern}}}

p” (T) essup, ey +e.

Letting ¢ — 0 we find

E[p"(1)X(1)1{ay] < E |p°(7) essup,cy

p¥(7)

E, [p”(tn)X(tn)l{A}]] '

On the other hand, the supermartingale property of p”(t) X ()14} implies

Er [p"(t0) X (tn)1 ()]
p*(7)

X(T)l{A} > essup,cy

I

so we conclude

E- [Pu(tn)X(tn)l{A}}
()
P-almost surely. The existence of a v* € V that makes p*” (t) X (t) a martingale on [t,_1, t,]
follows from Lemma A.4 (presented next). O

X(T)l{A} = essup,cy

I

P ()X (1)

using the stopping times 7; = inf{t € [r, T]\% > j} Aty. Then P{r; <t,} < %

18This follows from Doob’s Maximal Inequality applied to the supermartingale on [7,ty]
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Several of our results use the the following lemma which connects the martingale prop-
erty to attaining the supremum.

Lemma A.4. Let A€ F, , (Htn—1 < T} and let X be a nonnegative Fi-adapted process
for which p” X1y 4y is a continuous local martingale on [tn—1,tn] for allv € V, and assume
P(p"(tn)1{ay > 0) =1 as in Assumption 3.2. Then

E- [Py(tn)X(tn) 1{A}]
(1)

for all stopping times T taking values in [t,—1,t,] if and only if there exists a v* € V for
which p*” ()X (t)1(ay is a martingale on [tn_1,ty).

X(7)1gay = essup,eyp (A.27)

Proof. NECESSITY: Given (A.27), we explicitly construct a v* € V that makes the process

*

p” (t)X(t)14) a martingale. The v* we construct has the form

V*(t) = Vo(t>1{t§tn—1} + Z Vm(t)l{Tm*1<t§Tm}a (A28)
m=1

where each v™ € V and {7™} is an increasing sequence of stopping times with 70 = #,,_4
and 7 T t,, almost surely. The important properties of v* are that, for all m,

E[p” (T™X (T 1ay] = E[p” (tn-1)X (tn—1)1{4y] (A.29)

and

E[,OV* (Tm)X(Tm)l{Am{Tm<T}}] < €m (A.30)
for a sequence {€p,} of real numbers that decrease to zero as m — oco. Property (A.29)
implies p¥" X 114y is a nonnegative local martingale and, consequently, a supermartingale
on [ty—1,t,]. Property (A.30) and the Monotone Convergence Theorem additionally imply

lim E[p"" (tn) X (tn) LA {rm=ta1}) = B[P () X (tn)11ay] = E[p” (tn-1) X (tn-1)1(a3],

m—0o0

so pr" X 14y must have constant expectation on [t,_1,t,] and is therefore a martingale on
[tn—1,tn]. We show later in the proof the v* we construct is in V.

Start by choosing an arbitrary # € V and set v°(t) = ©(t). We now construct a v* of the
form (A.28) using induction. Take as given a sequence of positive real numbers {¢,,} for
which €,, | 0. We start by defining v* € V and the stopping time 7. Using the properties
of the essential supremum (per Footnote 15 applied to (A.27) ), there is a v! € V such that

B (o) S X1 ]+ § 2 B ) X)) (A3

To find 71, we first define the increasing sequence of stopping times by

P (1) x

1 : v
i =inf{t > tp_1|p" (tn-1)—7——
J { n " p”l(tn—1)

(t)1gay =5} At

a0
Pul (tn—1)
[tn—1,tn], Doob’s Maximal Inequality implies

Because p”(t,_1) X(t)1;4) is a nonnegative local martingale (supermartingale) on

Plr <t} = P{ w0 Pl X(ey1 > n} < ZP )Xt 1)

{t€[tn—1,tn]} PV (tn-1) J
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(Revuz and Yor, 1994, Theorem II.1.7). Consequently, le 1 t, almost surely, and the
Monotone Convergence Theorem implies there is an j' satisfying both

Elp” (tn-1)X (tn—1)1{43] €
— <3

P{rji <tn} < ;

and )
17 py (tn) €1
FE [p (tnil)mX(tn)l{A ﬂ{,rjll <T}}] < 5 (A32)
Define 7! = lel, and let v*(t) = uo(t)l{tgtnil} + v (t) 1, <1<r1) on the set {0 <t < 1}
Before proceeding, we verify properties (A.29) and (A.30) for the ! and 7! that define
v* up to this point. Note the stopped process p* (t/\Tl)X(t/\Tl)l{A} is a uniformly bounded
and nonnegative local martingale on [t,_1, t,], so it is a martingale by Lebesgue’s Dominated
Convergence Theorem. Therefore F [pl’* (Tl)X(Tl)l{A}] =F [p”* (tn_l)X(tn_l)l{A}] , which
verifies (A.29) for m = 1. Given this, we have

*

Elp” (tHX () anm<nn] FE[P )X ) laniztyy] = E [P"* (tnfl)X(tnfl)l{A}} :
(A.33)

Subtracting (A.33) from (A.31) and using the identity p*" (t) = pﬁ(tn,l)pﬁy(t(t) ; we obtain
n—1

the inequality

1 1
o P’ (tn) €1 o P (mh) 1
E tno1)—————X(tp)1 - —-F tho1)————X 1 - >0
0" ( 1)pyl(tn_1) (ta)lpan <o+ 10" ( 1)pyl(tn_1) (TOlanr <y

Our choice of j! in (A.32) therefore implies

E[py* (Tl)X(Tl)l{Aﬂ{Tl<tn}}] < €.

Thus our construction of v* up to this point also satisfies property (A.30) for m = 1.

We continue our construction of v* using induction. Let k > 2 be an integer, and
suppose we have a v* of the form v*(t) = v0(0) + K1 V™ (t)1{zm-144<7my on the set
{0 <t < 7%=1} for which the properties (A.29) and (A.30) hold for all m, 1 <m < k — 1,
given the sequence {¢,,}. We are assuming

B [p¥(tn) X (tn)114)]
k) ’

k _
X(t )1{A} = essup,cy o

so (per Footnote 15) there is a v* € V so that
k

E
P (rh )

P () +2 2 B[p" (X D1 ] = B [0 () X (te1) 1y

(A.34)
To select 7%, we first define the increasing sequence of stopping times for j > j*~! by

(tn) 1

x Yt
T]’? = inf {t |t > """ and p (Tk_l)pi()X(t)l{A} > j} Aty
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Doob’s Maximal inequality again implies T]’? T t,, almost surely. This and the Monotone Con-
E[Pﬁ(tnfl)X(tnfl)l{A}]

vergence Theorem implies there is an j* satisfying both P{Tjk <tp} < pis <
% and
Y (tn)
v k—1y P n €L
E\p” (7 )WX(tn)l{T]’?k<T} <5 (A.35)

Define 7% = Tfk, and on the set {0 <t < 7%} let v*(t) = v1(0) + 37 _, V() Lrm—1cp<rmy-
We verify properties (A.29) and (A.30) for m < k. The stopped process p*" (tATF) X (t A
7%) is a uniformly bounded nonnegative local martingale on [t,_1,t,], so it is a martingale
by Lebesgue’s Dominated Convergence Theorem. This implies E[p” (TMX (Tk)l{ A}] =
E [p”* (tn_l)X(tn_l)l{A}], which verifies property (A.29) for m = k. The martingale prop-
erty of the stopped process and the fact that property (A.29) holds for m = k — 1 imply

E [,0”* (tn—l)X(tn—l)l{A}} =E [P”*(Tk_l)X(Tk_l)l{A}} =E

vk Tk
PV (Tk_l)pf%(_k—)l)x<’rk)1{A}]
*(Tk—l)ppy((z)l)X(tn)l{An{T] tn}}]

(A.36)

vk k
v ety P (T
p” (7 1)pl,k(7(_k_)1)X(Tk)1{Aﬂ{Tk<tn}}

= F +E |p”

Subtracting (A.36) from (A.34) yields and applying (A.35), we obtain

vk k
v v* — T
B 0" X angian] = 2 |06 1)pl[/)k(7('k)1)X(Tk)1{‘4ﬁ{7"<tn}}] =k

which verifies property (A.30) for m = k.

Induction provides a sequence {v™} in V and an increasing sequence of stopping times
{r™}. Because P(7™ < t,,) | 0, the process v*(t) = v(t) 1<t 13+ D poey V" (D)1 frm—1cy<rm)
is defined on [0,¢,]. Its construction makes it progressively measurable. To verify v* € V,
we must check the integrability condition fti"_l |lv*(t)||?dt < oo almost surely. Note that
P (tn) = p”" (tn) on the event {AN{r™ = t,}}, and P(p"" (tn)l{ay > 0) = 1 since
Vm € V and P(po(tn)l{A} > 0) = 1 (which is implied by Assumption 3.2). Therefore
P(p”" (tn)lgay = 0) < P(AN{7™ < tn}) — 0 as m — oo, so P(p”" (tn)1{ay = 0) = 0. The
integrability condition then follows from Revuz and Yor (1994, IV.3.25)

SUFFICIENCY: Because p” X1(4y is a nonnegative local martingale for all v € V), it is
also a supermartingale. Therefore

Ep, o [p"(tn) X (tn)1q43)

essup,cy < X(tn—1)1gay-

p¥ (tn—1)
If there exists a v* that makes p”” X a martingale, then we have E [p”(t,,—1) X (t5— 1)1{A}] =
E[p”" (tn) X (tn)1{ay] < E[p” (tn-1) essup, ey, %X(tn)l{fx}] < E [p"(tn-1)X (tn-1)1{43],
which proves the statement. O

Proof of Lemma A.3. The process

B[N 07 )y ()1 1,54
p¥(t)

1748 (t) = essup,cy
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exists and has an RCLL modification for which p¥(t)V1(¢) + Z;VJEI p" () Y(ti) it <oy 18
an RCLL supermartingale for any v € V (the proof is virtually identical to Karatzas and
Shreve (1998, Theorem 5.6.5)). Choose a fixed stopping time 7 and an arbitrary o € V.
The properties of the essential supremum (see Footnote 15) and the Monotone Convergence
Theorem imply, for any € > 0, there is a v¢ € V such that!®

€

[ )5, 1{t1>7}} > E o/ (n)Vi(7)] -

Choosing n* large enough for all n > n*,

n/\N+1 pye t %
N 2 7 & 1)y | + 5> E[p"(r)V*()].
J=1 p(7)

By assumption, for any n there exists a 7 such that p” (tAtn) X (EAL,)+37 7 ()2 (t) 11, <tata)
is a martingale on [0, t,, AT]. Define 7,,, = inf{¢[p”" ()X (t)+>_ p”" (t;)x z(tj)1{, <4y > m} and

v(t) = v () r, <y + P(t) 17,51 Then P (A t) X (E A ) + 3 7 (t)z(ti) e, <entny
is a martingale and Fatou’s Lemma implies

nAN-+1 pym t AN+ Ve t
. D ] 2 J
lim inf £ | p™(7 ; () ) le>ry | = E | P (7 z:: ) t)1t;5r)
(A.38)

Thus, by passing to a subsequence if necessary, there exists an m* such that for all m > m*

nAN+1 ,/m nAN+1 Ve t]' %

p tj ?(r
J_Zl on'm 7_ )1{t >T} +€ > E p J_Zl pye 7_ 1{tj>7'} + 3

hs

> E [p%)vfm} .

The process p”(7) VVTg(M)’L)X(t Atn) + 3 07 (1) l,m((tj)) z(tj)1{;<ine,) i @ martingale on

7,tn A T)]. The supermartingale property of VI implies
[ p gale property p

nAN+1 ,m m
Vi(r) > E; Z P m(tj)?(tj)l{t->f}+ P m(tn)vr(tn)l{tn<T} ;
= (1) g P’ (7)

so we have

s P () r
e>F T)—m V> (tn) 1,
|:p ( ) Pz (7_) ( ) {tn<T}

191f we define

E; [Zj\]ﬁlp ()t ;5]
p¥(7)

for stopping times 7 € [0,7] it may differ from V'(7) since, although they agree on constant

stoppping times, they are defined differently for stopping times which are not constant. However,

we are using a right continous modification of VA so the arguments in Karatzas and Shreve (1998,
Remark 5.6.7) can be used to show VA(7) = VA(7) P almost surely.

V(1) = essup,cy, (A.37)
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By assumption VI > X,

%)X (1)1 | (A.39)

Ie>E [p”(r)

Because p” (T )py,slit?t)")X(t/\tn)+Zp (1 ) s ((t)) 2 (tj)1(,<tat, ) 18 a martingale on [7, t, AT

and by assumption X (¢,) = 0 when ¢, = T we have

p’ t p”" (tn)
x(tj) . > + X (tn) 14¢,
J {t;>1} P ( )pl, (7_) ( ) {tn<T}

AN+
E[p"(r)X(r)] = E | 0"( Z

ot 1,0y | + 16

B [0 0 ()2t 1 1 |
p¥(T)

< E | p”(7) essup,cy + Ie.

Letting € — 0 we find

E, [Z p”(tj)x(tj)l{tj>f}]
p¥(7)

E[pf/(T)X(T)} < E |p¥(r) essup, ey

The process p”(t) X (t) + > p”(tj)2(t;)1{s,<4) is a nonnegative local martingale and thus a
supermartingale so

B [0 7 (4)e(t) 1,5
p¥(7)

X (1) > essup,cy

)

so we conclude
e |00 7 (4)2 () s 5 |
P ()

X(7) = essup,cy

)

P-almost surely.
Finally, from (A.39) it also follows that we can construct a p”~ such that

lim E [p”* (tn)X(tn)] —0

So
N+1
X(0)=E|> o (tj)a(t))
j=1
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