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Motivation

Brief Introduction to Algorithmic Trading

Some numbers on algorithmic trading:(data source: J.P.Morgan)
◮ At least 30% of US equity markets is traded algorithmically: 360-750

billion shares/year.
◮ A typical brokerage firm trades $1-5 trillion/year algorithmically. A

saving of 1 bps(1bps=0.01%) translates to billions of dollars for the
firm.

◮ A typical algorithmic trading strategy might submit 500-1000 child
orders.

Definition of algorithmic trading:
◮ The use of computer programs to automatically trade large pre-defined

orders for financial securities in electronically accessible markets.
◮ The goal of algorithmic strategies is not to maximize trading P&L but

to effectively manage trading costs and risk.
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Motivation

Motivation

Investors need to trade large sizes, far larger than the market place
can absorb immediately without adverse price impact: buying drives
price up and selling drives it down.

Large orders(parent order) need to be parceled out in smaller
sizes(child orders) and traded over relatively large periods of time,
such as one day.

However, extended trading hours incur uncertainty of the order’s true
execution cost, such as price volatility and liquidity risk.

Since the order is executed over a long period it makes sense to use
some form of ‘average price‘ when judging the quality of a strategy.
Both the mean and the risk of the ‘average price‘ should be
considered.
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Price Dynamics

Model Setup

Assume a buying problem with parent order size X0 shares in one day.
Divide 1 day into N periods by t0 = 0, t1, ..., tN . Each period execute
a child order of size y0, y1, ..., yN−1:

N−1
∑

i=0

yi = X0.

Stock price is determined by the trading activity of both exogenous
traders and our trader;

Price determined by exogenous traders: arithmetic Brownian motion
with zero drift:

St = S0 + σS0Bt .

where volatility σ is assumed constant and known.
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Price Dynamics

Market Impact

Incurred by the act of our trading, i.e. demanding liquidity and thus
changing the supply and demand balance.

Different models:
◮ Permanent impact: representing value information to other traders;
◮ Temporary impact: representing cost of demanding liquidity;
◮ Resilient impact: representing elastic liquidity as in Obizhaeva and

Wang(2006).

Assume only linear temporary market impact for simplicity of
presentation:

S̃ti = Sti + ηiviyi

where yi is the child order size, vi = yi

1 day/N
is its execution speed

and ηi is the market impact factor, which represents liquidity level.

Same market impact model as Almgren and Lorenz(2011).
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Price Dynamics

Implementation Shortfall

The implementation shortfall(or slippage) is defined as the difference
between the final execution cost with the parent order’s initial
notional value:

I =

N−1
∑

i=0

S̃ti yi − X0S0
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Optimal Execution Problem

Objective

The optimal execution is a trade-schedule that minimizes the risk
adjusted cost for the trade:

MV(κ) : min
(

E[IN ] + κVar[IN ]
)

where κ ≥ 0 is the risk aversion factor.

By varying κ, we obtain a family of optimal execution strategies that
create an ”efficient frontier”.

Two extreme case:
◮ when κ = 0, risk neutral, y∗

i = X0

N
, VWAP strategy.

◮ when κ = +∞, disregard market impact and trade everything at the
beginning: y∗

0 = X0.

A good strategy should balance the trade off between market impact
cost from fast trading with the volatility risk from slow trading.
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Optimal Execution Problem

Deterministic vs. Adaptive Strategy

Entire trade schedule is fixed in advance, first proposed by Almgren
and Chriss(2001).
Allow adjustment of child order size in response to price movement
observed during execution.

◮ The child order size yi will not be determined until the price Sti has
been observed. y0, y1, ..., yN−1 are adapted to the filtration generated
by price process Sti .

◮ Since mean-variance objective suffers inconsistency in dynamic
programming framework, we clarify the mean-variance objective,
particularly the risk aversion factor κ is fixed at the order arrival time,
and should not be modified during the trading process.

◮ Aggressive-in-the-money(AIM): buy more when the price falls and buy
less when the price rises.

◮ Adaptivity pattern(AIM or passive-in-the-money(PIM)) depends on
objective function(or utility function). Schied and Torsten(2009) shows
that mean-variance objectives falls into the category of increasing
absolute risk aversion(IARA) utility, whose adaptive strategy should be
AIM.
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Optimal Execution Problem

Sample Trading Examples
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Optimal Execution Problem

Efficient Frontier Comparison

Adaptive strategy should always work no worse than deterministic
strategy.

Adaptive strategy works particularly well when the trader is more risk
averse, and two strategies coincide when risk aversion factor κ is
small:
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Linear-Quadratic Approach

Linear-Quadratic Auxiliary Problems

Dynamic Programming is not directly amenable for the minimization
of mean-variance objective since the variance operator does not
satisfy the smoothing property:

∀0 ≤ s ≤ t,Var[Var(·|Ft)|Fs ] 6= Var(·|Fs).

Instead, the expectation operator satisfies the smoothing property and
the following linear quadratic problem can be solved by standard
dynamic programming: for r0 ∈ R

LQ(r0) : minE [r0IN + I 2
N ].

Proposition: The optimal strategy of the original mean-variance
problem is a subset of the union of solutions of all linear quadratic
problems. Let

ΠMV(κ) = {π|π is an adaptive strategy minimizing MV(κ)},

ΠLQ(r0) = {π|π is an adaptive strategy minimizing LQ(r0)}

then ΠMV(κ) ⊂
⋃

r0∈R ΠLQ(r0).
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Linear-Quadratic Approach

Solving the Original MV problem

Assume we can solve LQ(r0) for any r0 ∈ R, then an optimal strategy
π
∗(κ) ∈ ΠMV(κ) that solves MV(κ) should satisfy

π
∗(κ) = arg min

π∈
⋃

r0∈R ΠLQ(r0)

(

E[IN |π] + κVar[IN |π]
)

However, solving LQ(r0) through dynamic programming for each
r0 ∈ R separately is computationally infeasible. Can we solve all
auxiliary problems all at once?
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Linear-Quadratic Approach

Solving Auxiliary Problems

Yes, we can! Take r0 as a state variable given at the initial period, and

ri = r0 + 2 × realized partial slippage before time ti

Therefore, ri is observable by time ti , and it is a function of past child
orders and price movement.

More importantly, the objective linear-quadratic function can be
decomposed as a sum of cost functions:

r0IN + I 2
N =

N−1
∑

i=0

Ci (Xi , ri , yi ,Sti+1
− Sti ).

where Xi is the remaining shares for execution.

The cost function Ci(Xi , ri , yi ,Sti+1
− Sti ) is determined by three

parts: state variable (Xi , ri ), decision variable yi such that
0 ≤ yi ≤ Xi and exogenous stochastic process Sti+1

− Sti .
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Linear-Quadratic Approach

Solving Auxiliary Problems, cont’d

Bellman backward induction: Let Vi (Xi , ri ) be the ith value function
at state (Xi , ri ):

◮ At last period, buy all shares left unexecuted y∗
N−1 = XN−1:

VN−1(XN−1, rN−1) = CN−1(XN−1, rN−1, XN−1, 0).

◮ For other periods: i = N − 2, N − 3, ..., 0:

Vi (Xi , ri ) = min
0≤yi≤Xi

E[Ci (Xi , ri , yi , Sti+1 −Sti )+Vi+1(Xi+1, ri+1)|(Xi , ri )].

and the optimal child order size y∗
i is the minimizer of the RHS of the

above equation.
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Numerical Result

Numerical Approximation

Shrink the range of ri from R to an interval [Z0,ZK ]. The particular
choices of Z0 and ZK are based upon deterministic strategy’s
performance during Monte Carlo simulation. Discretize [Z0,ZK ] into
K intervals where ri ’s take values at grid points Z0,Z1, ...,ZK .

Expectation in Bellman equation is computed through
Gaussian-Legendre quadrature.

When solving the minimization problem in the Bellman equation, we
resort to deterministic strategy to provide a smaller search range
within [0,Xi ].

Once the Linear Quadratic problems are solved, (X0, r0 = Zk) for
(k = 0, 1, ...,K ) is assigned as the initial state respectively to test the
performance of LQ(r0) through simulation. Sample mean m(Zk) and
variance v(Zk) are computed for each Zk .
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Numerical Result

Numerical Approximation, cont’d

Once the curve {m(Zk), v(Zk)}k=K
k=0 is known, the point which

produces the smallest mean-variance m(Zk) + κv(Zk) corresponds to
the optimal strategy for MV(κ).

Other equivalent objective, such as constrained minimization problem

E(v) : min E[IN ]

s.t. Var[IN ] ≤ v

can be solved in a similar way:
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Numerical Result

Full Price Adaptivity: Current Method

Almgren and Lorenz(2011) solves an equivalent constraint variance
minimization problem, which has a state variable of the same two
dimension.

Their decision variable contains both the child order size and an
additional integrable function over the sample space of next period’s
price change.

Dynamic programming suffers from the curse of dimensionality. The
computation effort grows exponentially with the dimension of decision
variables.

Approximate the integrable decision function through a two dimension
step function(i.e. three dimension decision variables), which
corresponds to whether the price goes up or down for the next time
period. This essentially restricts the child order size reacting to a
binomial tree price process.
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Numerical Result

Full Price Adaptivity: Our Method

As a comparison, our dynamic programming approach also has a state
variable of two dimensions but a decision variable of only one
dimension.

More importantly, our algorithm’s price adaptivity does not rely on
the decision variable but the state variable ri , which allows the
decision variable to react differently to all possible future price levels,
while maintaining simpler algorithm structure.

With the same market coefficients and the same level of state variable
resolution, our strategy performs consistently better than the current
published result, and in some cases, saves more than 40% in terms of
expected slippage under and same variance performance.
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Numerical Result

Full Price Adaptivity: Numerical Result
The implementation shortfall IN reported below has been scaled by σXS0

where σ is the stock’s daily volatility, such as σ = 125bps.

case 1 2

κ 1.62 5.29

E[IN ] Var[IN ] E[IN ] Var[IN ]

VWAP 0.1531 0.3309 0.1531 0.3309

Deterministic 0.2567 0.1439 0.4537 0.0771

Adaptive 0.2331 0.1435 0.3271 0.0771

E[IN ]
E[IVWAP ]

Var[IN ]

Var[IVWAP ]

E[IN ]
E[IVWAP ]

Var[IN ]

Var[IVWAP ]

Deterministic 1.68 0.43 2.96 0.23

Adaptive 1.52 0.43 2.14 0.23

A&L(2011) Adaptive 1.52 2.27

improvement % 0 5.73%

improvement of E[σIN ](bps) 0 2.49
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Numerical Result

Full Price Adaptivity: Numerical Result

case 3 4

κ 30.00 108.75

E[IN ] Var[IN ] E[IN ] Var[IN ]

VWAP 0.1531 0.3309 0.1531 0.3309

Deterministic 1.0716 0.0274 1.9898 0.0109

Adaptive 0.4893 0.0274 0.6373 0.0109

E[IN ]
E[IVWAP ]

Var[IN ]

Var[IVWAP ]

E[IN ]
E[IVWAP ]

Var[IN ]

Var[IVWAP ]

Deterministic 7.00 0.08 13.00 0.03

Adaptive 3.20 0.08 4.16 0.03

A&L(2011) Adaptive 3.92 7.09

improvement % 18.37% 41.33%

improvement of E[σIN ](bps) 13.78 56.06
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