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Abstract

Traditional models of bank runs do not allow for herding e¤ects, because in

these models withdrawal decisions are assumed to be made simultaneously. I extend

the banking model to allow a depositor to choose his withdrawal time. When he

withdraws depends on his consumption type (patient or impatient), his private,

noisy signal about the quality of the bank�s portfolio, and the withdrawal histories

of the other depositors. Some of these runs are e¢ cient in that the bank is liquidated

before the portfolio worsens. Others are not e¢ cient; these are cases in which the

herd is misled.
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1 Introduction

In the classic bank-runs model of Diamond and Dybvig (1983), individual withdrawal

decisions are made simultaneously. The lack of detailed dynamics of withdrawals makes

it di¢ cult to explain some observed features of bank runs. In reality, at least some

withdrawals are based on the information about the previous withdrawals of others.1

During the 1994-1995 Argentine banking crisis, large depositors were responsible for most

of the deposit out�ows at the beginning of the crisis. Small depositors began to make

substantial withdrawals two months later.2 In their analysis on the runs on Turkish special

�nance houses (SFHs)3 in 2001, Starr and Yilmaz (2007, p1114) �nd that depositors made

sequential withdrawals in�uenced by the history of the withdrawals of others. The authors

argue that the �increased withdrawals by moderate-size account holders tended to boost

withdrawals by [their] small counterparts, suggesting that the latter viewed the former as

informative with respect to the SFH�s �nancial condition.�

In the present paper, I build a model in which the timing of individual withdrawals

is determined by the depositor�s consumption type (patient, which means he does not

need to consume early, or impatient, which means he needs to consume early), his noisy

signal about the quality of the bank�s portfolio, and the withdrawal history of other

depositors. The signals are received in an exogenously determined sequence, but the

timing of withdrawal is determined endogenously.4 Because a depositor�s simple withdraw-

or-not action does not reveal perfectly to others the pair of private signals that he receives,

other depositors can only imperfectly extract the depositor�s private signals from his

action. They update their beliefs about the quality of the bank�s portfolio accordingly.

This paper does not focus on the panic-based bank runs of Diamond and Dybvig

(1983). (See also Peck and Shell, 2003.) I focus instead on bank runs that occur as a

1Brunnermeier (2001, p. 214) says that �Although withdrawals by deposit holders occur sequentially
in reality, the literature typically models bank runs as a simultaneous move game.�

2See Schumacher (2000).
3Special �nancial houses are like commercial banks, but their deposits are not insured.
4Chamley and Gale (1994) and Gul and Lundholm (1995) were the �rst to introduce models of herding

in investment decisions with endogenous timing. Such a setup has not been applied to bank deposit game,
where payo¤ externality is important.
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result of depositors trying to extract information about bank portfolio quality from the

withdrawal histories of others. Because signals about the fundamentals are imperfect, and

because signal extraction from the observed withdrawal history is also imperfect, a bank

run can occur when the bank fundamentals are strong. In particular, it can occur when

�too many�depositors receive early liquidity shocks. A bank run due to imperfect signal

extraction only occurs in a setting with non-simultaneous withdrawal decisions. Bank

runs in this sense are not purely fundamental-based.5,6

I show that there is a perfect Bayesian equilibrium in which a depositor withdraws if

his expected utility is below his threshold level, and otherwise he waits. A depositor�s

expected utility depends upon his beliefs about the quality of the bank�s portfolio. These

beliefs are updated recursively by the observed withdrawal history of the other depositors.

If a depositor�s beliefs are in an intermediate range, he follows his private signals: If he

is impatient or the portfolio signal is unfavorable, he withdraws; otherwise he waits. A

bank run occurs as a result of a herd of withdrawals when all depositors withdraw due

to unfavorable signals and/or unfavorable observations on withdrawals. If a depositor�s

belief becomes su¢ ciently favorable, the private signal he receives will not be decisive:

The depositor waits to withdraw unless he is impatient. In this case, his private signal

will not be revealed through his withdrawal behavior, so his withdrawal behavior does

not a¤ect others�beliefs or their expected utilities. A �no-bank-run�regime thus takes

place as a result of a �herd of non-withdrawals.�

Compared with herding in investment decisions (Banerjee, 1992; Bikhchandani et al.,

1992; and more recently Chari and Kehoe, 2003, 2004), herding in bank runs has some

special features that lead to interesting results. The most important di¤erence lies in

payo¤ externality. In the banking setup, a depositor�s payo¤ depends not only on his own

actions but also on the actions of others, in particular, whether a bank run occurs or not.

So payo¤ externality adds additional uncertainty to a depositor�s payo¤. However, this

payo¤ uncertainty is not necessarily bad, because a run can force the bank to liquidate

5See Allen and Gale (1994, 1998), Gorton (1988), and Calomiris and Gorton (1991), among others,
for theoretic models and empirical evidence on fundamental-based runs.

6Goldstein and Pauzner (2005) construct a model in which depositors receive i.i.d. signals on funda-
mentals and determine whether to run on the bank simultaneously.
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assets before low portfolio returns are actually realized, that is, before a higher welfare

loss is incurred.

The present paper addresses a result that is paid little attention to in the traditional

herding literature: One�s expected utility is not necessarily monotone in one�s own belief.

Because we want to liquidate the bank early if its portfolio performs poorly and keep it

operating if it performs well, information about the bank�s portfolio is valuable. Although

a more favorable belief makes a depositor more con�dent in the quality of the bank�s

portfolio, he knows it is also more likely to lead to a herd of non-withdrawals in which

no more information will be made available in the future. Expected utility might not be

increasing in the probability that the portfolio return is high, because a non-withdrawal

herd reveals no further information about the bank�s portfolio. Combined with payo¤

externality, the non-monotonicity can result in multiple threshold beliefs: A depositor

can withdraw with a relatively favorable belief about the bank�s portfolio performance

because he expects he will not be able to accumulate su¢ cient information, but the

possible bank run will hurt his chance of getting paid; However, if he has a less favorable

belief and he expects more information to be revealed, he could prefer to wait because

the gain from more information outweighs his probable loss in a bank run; If he has an

unfavorable belief, the dim prospect of the bank�s portfolio and the fear of loss in a bank

run can dominate the incentive to wait.

There is literature on bank runs that is related to this paper.7 Chen (1999) explains

contagious bank runs using an information externality in the simplest two-stage game.

Banks�portfolio returns are correlated. Bank runs are contagious because depositors infer

negative information about their own banks�portfolio return from the observation of runs

on other banks. Compared with Chen�s work, my paper has a more general setup that

can explain a bank run, as well as no run, for a single bank as a result of herd behavior.

7Yorulmazer (2003) sets up a similar model in which depositors receive signals about the portfolio
returns in sequence in an attempt to explain herding runs. There are two major di¤erences between his
work and mine. First, the order of withdrawals in his model is determined exogenously as in Bikhchandani
et al. (1992). The timing of withdrawals is endogeously determined in my paper. Second, Yorulmazer�s
analysis is focused on the case in which consumption types of the depositors are publicly observed. In
my paper, consumption types are only privately observed.
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Chari and Jagannathan (1988) analyze an economy in which the uninformed depositors

infer information about productivity by observing the aggregate withdrawals rate. There

is a rational expectation equilibrium in the model that allows for bank runs. However,

Chari and Jagannathan use a static equilibrium concept, whereas my paper emphasizes

the dynamics in the withdrawal process.

The remainder of this paper is organized as follows: The model is introduced in

section 2. In section 3, I describe the equilibrium for a demand deposit contract. A

perfect Bayesian Nash equilibrium is shown to exist. In section 4, I discuss the properties

of the equilibrium. The �nal section o¤ers some concluding observations.

2 Model Setup

Time: There are three time periods, index by t = 0; 1; 2. Period 0 is a planning period.

Period 1 is divided into N + 1 stages, where N is a �nite integer.

Depositor�s endowments and preferences: The depositor�s endowments and pref-

erences are essentially as in Diamond and Dybvig (1983). There is a measure one of

depositors. Each depositor is endowed with one unit of the consumption good in period 0,

and nothing in periods 1 and 2. Depositors can store the consumption good at no cost in

any period. Each depositor has probability � to become impatient in period 1. Impatient

depositors derive utility only from consumption in period 1. Their utility is described by

u(C1); where C1 is the consumption received in period 1. The rest are patient depositors,

who consume in the last period. If a patient depositor withdraws consumption in period 1,

he can store it and consume it in period 2: Thus, a patient depositor�s utility is described

by u(C1 + C2); where C2 is the consumption received in period 2. The utility function

is strictly increasing, strictly concave, and is normalized so u(0) = 0. The coe¢ cient of

relative risk aversion (CRRA), �xu00(x)=u0(x); is greater than 1 for x � 1:Whether a de-

positor is patient or impatient is his private information and is revealed to the individual

depositor at some stage in period 1. By the law of large numbers, � is also the fraction

of depositors in the population who are impatient.
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The bank and its technology: The bank behaves competitively. In addition to a

costless storage technology, the bank can also invest in a productive asset. The investment

in production can be made only in the initial period. Production is risky. One unit of

consumption good invested in period 0 yields R units in period 2. R = R > 1 with

probability p0, and R = R � 1 with probability 1 � p0. The asset can be liquidated in

period 1 with return of 1:8 Either all or none must be liquidated. The productive asset

can therefore be taken as an �indivisible good.�An individual depositor cannot acquire

the asset directly.

The contract: For convenience, I assume that if a depositor decides to deposit at the

bank, the minimum amount of the deposit is one unit of consumption good. A competitive

bank o¤ers a simple demand deposit contract that describes the amount of consumption

goods paid to the depositors who withdraw in periods 1 and 2, c1 and c2, respectively,

where c1 is independent of the stochastic asset return and c2 is state contingent. The bank

pays c1 to the depositors at t = 1 until it is out of funds. If the amount of consumption

good in storage cannot meet the withdrawal demand, the bank has to liquidate assets.

The bank distributes the remaining resource (plus or minus the return on the portfolio)

equally among the depositors who wait until the last period. Denote the fraction of

deposits that the bank keeps in storage by � and the fraction of depositors who withdraw

in period 1 by � (0 � � � 1):9 The payment to a depositor who withdraws in period 2 is

given by

c2 =

8>>>><>>>>:
�� �c1 + (1� �)R

1� � if �c1 � �
1� �c1
1� � if � < �c1 � 1

0 if �c1 > 1:

Because at least � of the depositors need to consume in period 1, � must be at least

�c1. If the bank cannot meet its payment requirements in period 1, the bank fails. The

bank does not liquidate the assets unless it is forced to do.

8Here, the liquidation value is set to be 1 for convenience. All results remain if the liquidation value
is between R and R. Setting the liquidation value higher than or equal to R captures the idea that weak
banks should be liquidated early to avoid future losses.

9Later in the present paper, I will con�ne attention to symmetric equilibria in which � equals either
� when there is no bank run or 1 when there is a bank run.
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Withdrawal stages and information: In each of the �rst N stages of period 1, only

one depositor is informed of his consumption type. Information about his type is precise.

He also receives a noisy, private signal about the return of the bank�s portfolio. Let Sn

denote the signal about the bank�s return obtained by the depositor who is informed at

stage n. The signal is accurate with probability q, q > 0:5. That is,

Pr(Sn = HjR = R) = Pr(Sn = LjR = R) = q;

where H and L are high and low returns, respectively. The probability of receiving

an accurate signal is q. After receiving a signal, the depositor updates his belief about

portfolio returns by Bayes�rule. The common initial prior is p0. At stage N+1; depositors

who have not received signals are informed of their consumption types but not about asset

returns. An impatient depositor has to consume at the stage when his consumption type

is revealed to him.

Timing of the banking game:

The timeline of the banking game can be summarized as follows:

Period 0: Bank announces the contract.

Depositors make deposit decision.

Period 1:

Stage n (1 through N): One depositor receives signals about his consumption type

and about asset returns.

He decides whether to withdraw or not.

Remaining depositors decide whether to withdraw or not.

Stage N + 1: Consumption types are revealed to those who have not been informed.

Depositors decide whether to withdraw or not.

Period 2: Bank allocates the remaining resources to those who have

not withdrawn in period 1.
Depositors are equally likely to be informed at each stage. Because N is small com-

pared with the continuum depositors, the probability of getting information in the �rst

N stages is zero. Depositors do not communicate with each other about the signals they
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receive. However, a depositor�s withdrawal action is observed by all others.10,11 Once a

depositor withdraws, he cannot reverse his decision. But if a depositor chooses to wait,

he can withdraw at a later stage. The �nal deadline for depositors to withdraw in period

1 is stage N + 1. Depositors are not allowed to change decisions after observing other

depositors�decisions at stage N + 1.

We can divide depositors into four types at each of the �rst N stages. The �rst type

is those who already have withdrawn their deposits from the bank. These are inactive

depositors who have no more decisions to make. The newly informed depositor who

receives signals in the current stage is of the second type. The third type consists of the

depositors who were informed at previous stages but have been waiting (call them already

informed depositors). The remaining type is the uninformed. Let T = fI; A; Ug be the

set of types of active depositors at a stage, where I, A, and U represent newly informed,

already informed, and uninformed depositors, respectively. The bank does not receive

private information about asset returns. It is in the same position as an uninformed

depositor in terms of information.

A �nite number of stages is necessary because it imposes a deadline for the depositors

to make decisions in period 1, so expected utility can be calculated by backward induc-

tion given the beliefs. The speci�cation of a continuum of depositors greatly simpli�es

calculation and presentation. In contrast, consider a model that has a �nite number of

depositors. There exists at least one perfect Bayesian equilibrium in a �nite game in

which the beliefs and actions of a depositor are a¤ected by the actions of others. Because

each depositor has an atomic share at the bank, every withdrawal has a signi�cant impact

on the amount of remaining resource at the bank, which complicates the calculation of

expected utility. The description of the equilibrium will be dependent on the parameters

10I consider the limit of large �nite economies. Individual withdrawals are observable, as in an economy
with a large number of depositors, yet the e¤ects on the total resources is negligible. Also see footnote
17.
11I assume that if a patient depositor decides to withdraw, he imitates an impatient depositor and

withdraws all of his deposits. Otherwise, the bank can distinguish the depositor�s true type and can
write a contract to refuse to pay him in period 1. Therefore, the depositor�s actions are discrete. Lee
(1993, 1998) shows that with exogenous timing of actions, herds cannot occur if the actions are continuous.
Whereas Chari and Kehoe (2004) show that with endogenous timing of actions, herds occur even if the
actions are continuous. Including continuous actions in the model would be an interesting extension.
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of the economy, and there will be many more cases to discuss.12

In the following section, I will show that there exists a perfect Bayesian equilibrium

in period 1 given a demand deposit contract. I will discuss the bank�s choice of contract

at the end of section 4.

3 Deposit Game

In Diamond and Dybvig (1983), a demand deposit contract that o¤ers c1 > 1 allows for

a panic-based bank run in the deposit game. For convenience, although panic-based runs

are allowed in the setup of the present paper, I do not consider them. A bank run occurs

in my model due to private information about the asset returns and imperfect extraction

of this information from observing the history of withdrawals.

Depositors observe the total number of withdrawals at each stage. Let Xn denote the

total number of withdrawals at stage n. The public history of withdrawals records the

total number of withdrawals at each stage up to stage n. A depositor�s private history

as of stage n di¤ers from the public history only if he has received signals at stage m,

m � n. A depositor�s belief at stage n is a function that maps his private history into the

probability that the asset returns are high. A depositor�s strategy at stage n is a function

that maps his private history into a zero-one withdrawal decision.

To simplify the notation, let x�n and p
�
n, � = I; A; U; denote the strategy and posterior

belief that the asset return is high, respectively, of a type � depositor at stage n. Let

x�n = 0 represent a depositor�s decision to wait at stage n and let x�n = 1 represent the

decision to withdraw.

The equilibrium concept here is perfect Bayesian equilibrium. In particular, I consider

a symmetric pure strategy perfect Bayesian equilibrium in which depositors with the same

history take the same action at each stage.

For a contract that o¤ers c1 < 1, there does not exist a symmetric pure strategy

run equilibrium, because given that all others withdraw from the bank, an individual

12In the appendix, I present a simple example of a two-stage, two-depositor economy. Similar results
are obtained in the example.

9



depositor prefers to wait to get all the remaining resources, which is expected to be an

in�nite amount. Not withdrawing before stage N + 1 is a patient depositor�s dominant

strategy regardless of all other depositors�actions and signals. Because an uninformed

depositor never infers any information about asset returns from the actions of the newly

informed depositors, a bank run does not occur. The analysis in the rest of section 3 is

based on the assumption that c1 � 1.

3.1 Bayesian Updates

A newly informed depositor updates his beliefs about the asset returns being high by the

productivity signal he receives. Let PH (p) and PL (p) be the posterior probabilities that

the asset return is high if a high or a low signal is received, respectively, given the prior

of p. From Bayes�rule, we have

PH(p) =
pq

pq + (1� p)(1� q) ;

and

PL(p) =
p (1� q)

p(1� q) + (1� p)q :

Given that q > 0:5; we have p � PH (p) � 1 and 0 � PL (p) � p for p 2 [0; 1]. PH (p)

and PL (p) are strictly increasing in p. Note that because the signals are of the same

quality, we have PH (PL (p)) = PL (PH (p)) = p:

Other depositors update their beliefs about the asset returns being high by observing

the actions taken by the newly informed depositor. If other depositors think that the

newly informed depositor does not make decisions according to his signal about produc-

tivity, that is, he withdraws if and only if he is of an impatient type, other depositors do

not change their beliefs, because the action of the newly informed depositor carries no

information about the productivity. Suppose, alternatively, that other depositors believe

that the newly informed depositor waits if and only if a high signal is received and he is

patient. If the newly informed depositor waits, other depositors update their beliefs by

PH at stage n. However, if the newly informed depositor withdraws, others depositors
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update their beliefs by

PeL(p) = p (1� q + �q)
�+ (1� �) [p(1� q) + (1� p) q] :

Here PeL (p) denotes posterior probability where the probability of observing an impatient
depositor is taken into account, given the prior of p. For p 2 [0; 1] ; we have 0 � PL (p) �

PeL(p) � p . Note that PH �PeL (p)� = PeL(PH (p)). It follows that the e¤ects of a sequence
of observed actions on the prior can be summarized by the number of non-withdrawals

and the number of withdrawals in the sequence.

3.2 A Perfect Bayesian Equilibrium

3.2.1 Beliefs and strategies

To simplify the notation, let u1 = u (c1) ; u2 = u
�
���c1+(1��)R

1��

�
; and u2 = u

�
���c1+(1��)R

1��

�
.

u2 and u2 represent a patient depositor�s utility in period 2, depending on the realization

of asset returns, if there is no bank run during period 1 (i.e., � = �).

The construction of the equilibrium relies on solving for a newly informed depositor�s

equilibrium strategies. The equilibrium strategies of an uninformed or an already informed

depositor can be constructed accordingly. I will show that there exists an equilibrium in

which a newly informed depositor makes his decision according to the following simple

rule:

xIn =

8<: 1 if impatient or pIn < bp
0 otherwise

(1)

for n � N; where bp solves
u1 = bpu2 + (1� bp)u2. (2)

bp is the cuto¤ probability belief at which a patient depositor is indi¤erent between with-
drawing immediately and waiting until the last period were there to be no future infor-

mation about asset returns. Given the contract, the cuto¤ belief of a newly informed

depositor is the same regardless of the stage at which the signals are received. Note that
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bp is positive given c1 � 1 and R � 1. Also note that bp = 0 if and only if c1 = R = 1 or
c1 = � = 1.

A newly informed depositor shares the same prior with the uninformed depositors. If

no one else makes a withdrawal at the current stage (which is true in equilibrium), the

belief of a newly informed depositor is updated by the signal he receives:

pIn =

8<: PL(p
U
n�1) if Sn = L

PH(p
U
n�1) if Sn = H

(3)

with pU0 = p0 and for n � N . If anyone else makes a withdrawal (which can happen o¤

the equilibrium path), then pIn 2 [0; p), where p = PL (bp).13
The beliefs o¤ the equilibrium path are arbitrary. Here for convenience, a newly

informed depositor�s belief is assumed to be any value below p o¤ the equilibrium path.14

Between the end of the last stage and the beginning of the current stage, only the newly

informed depositor receives new information. He would be the only one who would make

a withdrawal at the beginning of the current stage. If other depositors withdraw, the

newly informed depositor detects the deviation, and his belief falls below p. Let p denote

PH (bp). Equations (1)�(3) imply that on the equilibrium path, if a patient newly informed
depositor�s prior is between p and p; then he withdraws if he receives a low signal and

waits otherwise. If his prior is above p, he will not withdraw even if he gets a low signal,

whereas if his prior is below p, he will withdraw even if he gets a high signal.

The uninformed and already informed depositors update their beliefs by watching the

action taken by the newly informed depositor. Given the newly informed depositor�s

strategy, the belief of an uninformed or an already informed depositor at stage n, n � N ,
13If p = 0, the o¤-equilibrium path belief is pIn = 0. The same rules apply to equation (4).
14Note that later in the proof of the proposition, an active depositors�equilibrium strategy does not rely

on other depositors�o¤-equilibrium path beliefs. A depositor�s detectable deviation from the equilibrium
path (he withdraws but he is not supposed to) can trigger a bank run. However, the bank run does not
a¤ect the payo¤ that deviator receives because depositors are served sequentially.
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is updated by

p�n =

8>>>>>><>>>>>>:

[0; p) if Xn > 1, or (Xn = 0 and pUn�1 < p)

PeL(p�n�1) if Xn = 1 and p � pUn�1 < p

PH(p
�
n�1) if Xn = 0 and p � pUn�1 < p

p�n�1 otherwise

(4)

with p�0 = p0 and for � = A;U:

On the equilibrium path, an uninformed or an already informed depositor updates

his belief by the information inferred. O¤ the equilibrium path, the belief is assumed to

be any value below p. An uninformed or an already informed depositor can detect the

deviation in the following two situations: (i) more than one withdrawal is observed at the

beginning of the current stage, and (ii) the newly informed depositor does not withdraw

given pUn�1 < p. According to (1) � (3) ; the newly informed depositor at stage n with

prior pUn�1 < p withdraws even if he receives a high signal (although in equilibrium, there

is no active depositor with beliefs lower than p). If he does not withdraw, other depositors

detect the deviation.

Note that an already informed depositor�s prior belief can di¤er from that of the newly

informed and the uninformed depositors because he has received private information that

others might not have perfectly inferred, whereas he observes everything others do.

At stage N + 1; because there is no new information about asset returns, an active

depositor�s belief is equal to his belief at stage N: So p�N is a depositor�s �nalized belief.

With pUN as his �nalized belief, an uninformed depositor compares his expected utilities

from withdrawing and from waiting at stage N . If pUN � bp, he will wait for period 2
unless he turns out to be an impatient type at stage N +1. Otherwise, he will withdraw,

regardless of the actions of the other depositors. If all depositors withdraw, each depositor

has a chance of 1=c1 of getting paid, given c1 � 1. By symmetric strategies, the expected
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utility of an uninformed depositor at the end of stage N is

VN
�
pUN
�
=

8<: �u1 + (1� �)
�
pUNu2 +

�
1� pUN

�
u2
�
if pUN � bp

1

c1
u1 otherwise.

(5)

Note that due to payo¤ externality, which is captured by 1=c1 in (5), VN is discontinuous

and non-convex if c1 > 1.

Given an uninformed depositor�s expected utility at stage N and the strategies of the

newly informed depositors, the expected utility of an uninformed depositor at stage n;

n < N; can be constructed in a recursive way:

Vn
�
pUn
�
=

8>>><>>>:
�u1 + (1� �)

�
pUnu2 +

�
1� pUn

�
u2
�

if pUn � p

In
�
pUn
�
max

�
�
�
pUn
�
Vn+1

�
PH
�
pUn
��
+ (1� �

�
pUn
�
)Vn+1

�
PeL �pUn �� ; u1	 if p � pUn < p

1

c1
u1 if pUn < p;

(6)

where

In (p) =

8<: 1 if � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1
�
PeL (p)� � u1

1

c1
otherwise

(7)

captures the payo¤ externality when a bank run occurs, and

� (p) = (1� �) [(1� p) (1� q) + pq] (8)

is the probability that the depositor informed at the next stage receives a high signal and

is also patient, given the posterior belief of p at the current stage.

In light of the foregoing expected utility, an uninformed depositor�s strategy is

xUn =

8<: 1 if Vn
�
pUn
�
< u1

0 otherwise
(9)

for n � N .
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If the prior at stage n + 1 is very high (very low), that is, pUn � p (pUn < p), then

even though a low (high) signal is received, the newly informed depositor�s posterior

belief at stage n + 1 is still above (below) the critical level of bp. So the newly informed
depositor will not withdraw15 (wait). The newly informed depositor�s action does not carry

information about his signal of asset returns, so the beliefs of the uninformed depositors do

not change. The same argument applies to all future stages. Because no more information

will be inferred from the actions of the newly informed depositors at future stages, an

uninformed depositor�s belief will stay at the current level. According to his current belief,

the expected utility in the last period, if he does not withdraw and bank run does not

occur, is �u1 + (1� �)
�
pUnu2 +

�
1� pUn

�
u2
�
, which is greater (lower) than u1 as pUn � p

(pUn < p).

Suppose the newly informed depositor�s prior is moderately high. If a low signal is

received, the posterior belief falls below bp, whereas if a high signal is received, the posterior
belief is above bp. When the newly informed depositor waits, his action fully reveals that
he gets a high signal. The belief of the uninformed depositors will be updated by PH

accordingly. However, if a withdrawal is observed, an uninformed depositor�s belief will

be updated by PeL as he is not sure whether the newly informed depositor received a
low signal or encountered a consumption shock. The expected utility of an uninformed

depositor at the current stage is the weighted average of the possible expected utilities

at the next stage, where the weights are the probabilities that his current belief will be

updated by either PH or PeL at that next stage. Whether an uninformed depositor decides
to withdraw at the current stage depends on whether the weighted average exceeds u1.

When he withdraws, by the symmetric strategies and payo¤ externality, his expected

utility is 1
c1
u1.

Note also that Vn (p) is not necessarily increasing in the interval of [p; p), because it

is a weighted average of the next period�s possible expected utilities, Vn+1 (PH (p)) and

Vn+1
�
PeL (p)�, which are in the non-convex set of Vn+1 (p) by recursive construction.

An already informed patient depositor�s expected utility at stage n, denoted by Wn,

15That is, he will not withdraw unless he is an impatient type.
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can be constructed in a similar way:

WN

�
pAN
�
=

8<: max
�
pANu2 +

�
1� pAN

�
u2; u1

	
if VN

�
pUN
�
� u1

1

c1
u1 otherwise

(10)

Wn

�
pAn
�
=

8>>>>>><>>>>>>:

max
�
pAnu2 +

�
1� pAn

�
u2; u1

	
if pUn � p

maxf�
�
pAn
�
Wn+1

�
PH
�
pAn
��
+ if p � pUn < p and Vn

�
pUn
�
� u1�

1� �
�
pAn
��
Wn+1

�
PeL �pAn �� ; u1g

1

c1
u1 otherwise

(11)

for n � N . An already informed depositor is patient, otherwise he would have withdrawn

earlier. He knows the beliefs of the uninformed depositors, and he can predict whether

the uninformed depositors will withdraw or not. Because the uninformed depositors are

of measure 1, when they withdraw, an already informed depositor should also do so,

otherwise he will be left unpaid. Therefore, the expected utility of an already informed

depositor is conditional on whether the uninformed depositors withdraw or not. The

expected utility function Wn also applies to the newly informed depositor with posterior

belief of pIn if he is a patient type.

For n � N , an already informed depositor�s strategy is

xAn =

8<: 1 if Wn

�
pAn
�
< u1

0 otherwise.
(12)

At stage N + 1; an active depositor�s strategy is

xN+1 =

8<: 1 if impatient or pN+1 < bp
0 otherwise,

(13)

where pN+1 = pN .
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3.2.2 De�nitions and lemmas

Before proving that the conjectured equilibrium discussed above is indeed an equilibrium

given a demand deposit contract, I �rst introduce the de�nitions of a herd of withdrawals

and a herd of non-withdrawals and present two lemmas on the properties of an active

depositor�s expected utility.

De�nition 1 A herd of non-withdrawals begins when (1) the newly informed depositor

does not withdraw deposits unless he is impatient, even if a low signal about asset returns

is received, and (2) no other depositor withdraws unless his consumption type is revealed

to be impatient.

De�nition 2 A herd of withdrawals begins when all depositors withdraw deposits.

The logic behind the proof of the equilibrium is similar to Chari and Kehoe (2003).

However, due to payo¤ externality and the fact that the consumption types are private

information, the following lemmas are needed to establish the properties of an active

depositor�s expected utility. Lemma 1 shows that uninformed depositors are willing to

wait if high signals are inferred. So, in the equilibrium, a herd of withdrawals is triggered

by the inference of low signals. Lemma 2 shows that if an already informed depositor and

an uninformed depositor share the same belief, and the uninformed depositor is willing

to wait, then the already informed depositor also is willing to wait. In the equilibrium,

an already informed depositor will not run on the bank unless the uninformed depositors

decide to run.

Lemma 1 Given a posterior belief of p at stage n, if Vn (p) � u1, then Vn+1 (PH (p)) �
u1.16

By lemma 1, if a newly informed depositor�s decision to wait conveys a high signal to

the uninformed depositors, his decision will not trigger a bank run.

Lemma 2 If pUn = p
A
n and Vn

�
pUn
�
� u1, then Wn

�
pAn
�
� u1.

16Proofs of lemma 1 and lemma 2 are in the appendix.
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The intuition behind lemma 2 is the following. Conditional on being impatient, a

depositor prefers to withdraw immediately. If an uninformed depositor is willing to wait, it

must be true that conditional on being patient, the expected utility from waiting is higher

than that from withdrawing immediately. An already informed depositor is patient. If he

shares the same belief as the uninformed depositors, his expected utility is the same as

the uninformed depositors conditional on the uninformed being patient. Therefore, the

already informed depositor waits if the uninformed do so.

3.2.3 Proof of the equilibrium

Proposition Given c1 � 1, the beliefs and strategies in (1)� (13) constitute a perfect

Bayesian equilibrium.17

Proof. By construction, an active depositor�s belief is updated by Bayes�rule whenever

possible. The strategies of uninformed or already informed depositors are constructed to

be the equilibrium strategies given the strategies of a newly informed depositor. Hence,

the proof of the equilibrium needs only show that a newly informed depositor of a patient

type will follow the strategies described by (1)�(3), given the strategies of the uninformed

and the already informed depositors.

A newly informed depositor�s prior belief at stage n is higher than p. Otherwise a

herd of withdrawals would have occurred already. If a herd of non-withdrawals has begun

already, that is, pUn�1 � p, the newly informed depositor�s actions do not change the beliefs

of other depositors, and he will not be able to infer any information in future. Even if he

receives a low signal, his private belief is still above bp, so he will wait. In what follows, I
discuss cases according to the signal that the newly informed depositor gets at stage n,

given that a herd of non-withdrawals has not begun yet, that is, p � pUn�1 < p.
17This equilibrium can be viewed as the limiting case of a �nite economy. Consider an economy with K

depositors and N+1 stages, where N < K. Suppose depositors have an alternative short-term investment
opportunity, which yields a return of 1 + " (" is small but positive) per stage. Let p̂n be the belief of
a newly informed depositor at stage n at which he is indi¤erent between withdrawing immediately and
waiting until the last period were there to be no future information about productivity. We can list the
conditions on the parameters for a perfect Bayesian equilibrium in which a newly informed depositor
withdraws when his belief is below p̂n or he is impatient, and waits otherwise. The strategies and beliefs
of other types of depositors are constructed accordingly. When K ! 1; these conditions are always
satis�ed. The constructed strategies and beliefs converge to (1)� (13) when K !1 and "! 0.
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(1) The newly informed depositor gets a high signal. His belief now is higher than bp.
If he waits, he conveys the high signal to all other depositors. He becomes an already

informed depositor at the next stage and shares the same belief with the uninformed

depositors. By lemma 1, the uninformed depositors will be waiting. By lemma 2, the

newly informed depositor will wait too.

(2) The newly informed depositor gets a low signal. His belief becomes pIn = PL
�
pUn�1

�
<bp. According to the strategies, he should withdraw and get c1. Suppose he waits. Then

an uninformed depositor is misled and his belief is updated to pUn = PH
�
pUn�1

�
. The belief

of the deviator now becomes two low signals below that of the uninformed depositors.

That is, pIn = P 2L
�
pUn
�
. (The superscript on PL denotes the number of updates by PL.

Similar notation applies to PH and P~L.) By choosing to deviate, the best outcome that

the informed depositor can anticipate is a herd of non-withdrawals. (If he anticipates a

herd of withdrawals to occur, he would withdraw immediately.) Suppose a herd of non-

withdrawals occurs at a later stage j. The posterior belief of uninformed depositors at

stage j satis�es pUj � p. It also must be true that pUj�1 < p or PL
�
pUj�1

�
< bp. Otherwise,

the herd of non-withdrawals would have begun earlier. Since pUj�1 < p
U
j , it must be true

that a high signal is inferred at stage j. So we have pUj = PH
�
pUj�1

�
or PL

�
pUj
�
= pUj�1.

At stage j, the belief of the depositor who has deviated is still two low signals below

that of the uninformed. That is, the deviator�s belief at stage j is P 2L
�
pUj
�
. Because

P 2L
�
pUj
�
= PL

�
pUj�1

�
< bp, at the stage that the herd of non-withdrawals begins, the ex-

pected utility of the deviator is still lower than u1. Therefore, the depositor informed at

stage n does not bene�t from deviation. A newly informed depositor weakly prefers to

withdraw immediately if a low signal about asset returns is received.

In the equilibrium, the already informed depositors who were informed before a herd of

non-withdrawals begins share the same belief with the uninformed depositors. By Lemma

2, the already informed wait unless the uninformed decide to run on the bank. Those who

are informed after a herd of non-withdrawals begins wait.

Because the consumption types are private information, deviations are undetectable

to the uninformed and already informed depositors unless more than one withdrawal is
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observed at a stage before a herd of withdrawals begins. The newly informed depositor

can detect deviations if anyone else makes a withdrawal at the current stage. According

to the beliefs o¤ the equilibrium path, any detected deviation triggers a bank run ifbp > 0. If bp = 0, waiting is the dominant strategy even if all other depositors withdraw as
u1 = u2 = u (1).

18

We observe the following along the equilibrium path: A newly informed depositor

withdraws if he is impatient. If he is patient, he follows his private signal about asset

returns if his belief is below p. Other depositors watch the actions by the newly informed

depositor and update their beliefs accordingly. If there are a su¢ cient number of non-

withdrawals, the beliefs of the uninformed depositors will be raised above p, and a herd of

non-withdrawals will start. In the opposite case, if many informed depositors withdraw,

the beliefs of other depositors will keep falling until their expected utility reaches the

threshold, u1, at which point a herd of withdrawals starts. Although by (6) � (9) the

lowest possible belief to trigger a herd of withdrawal is p, a herd of withdrawals can start

before the belief falls below p due to payo¤ externality. Section 4 discusses this aspect of

the equilibrium in detail.

4 Discussion of the Equilibrium

Bank runs in this paper are partly fundamental based. Information about the fundamen-

tals is valuable in the sense that if portfolio returns are low, early liquidation of the assets

is desirable because it can avoid future losses. Because signals about the asset returns

are noisy, other things being equal, a depositor wants to accumulate as much information

as possible before he makes a decision. However, because signals are private, depositors

can only infer the information by watching the actions of those who are informed, and

the inference can only be drawn before either type of herd begins. A depositor with

a higher belief, on one hand, knows that the asset returns are more likely to be high,

but on the other hand, understands that the economy is more likely to reach a herd of

18Note that bp = 0 if and only if c1 = R = 1 or c1 = � = 1.
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non-withdrawals in which no information will be made available in the future. The for-

mer has a positive e¤ect on expected utility, whereas the latter adds a negative e¤ect.

Consequently, a depositor�s expected utility is not necessarily increasing in his belief.19

Because early liquidation occurs as a consequence of a bank run, it comes with a

cost due to payo¤ externality �some depositors will not be paid if a bank run occurs.

Payo¤ externality strengthens the positive e¤ect of a higher belief on expected utility,

because with a higher belief it is more likely that there will be a herd of non-withdrawals

in which case the cost due to payo¤ externality will be avoided, although whether the

expected utility function is monotone remains ambiguous. In what follows, I discuss in

detail the welfare consequences of a herd. The focus is on the properties of the uninformed

depositors�expected utility. I discuss cases according to whether the contract satis�es the

�high cuto¤ belief condition� or the �low cuto¤ belief condition.�The meaning of the

conditions will become clear at the end of this section.

High cuto¤ belief condition: �u1 + (1� �)
�
PeL (bp)u2 + �1� PeL (bp)�u2� > 1

c1
u1:

Low cuto¤ belief condition: �u1 + (1� �)
�
PeL (bp)u2 + �1� PeL (bp)�u2� � 1

c1
u1:

The left-hand side of the cuto¤belief conditions is an uninformed depositor�s expected

utility with belief PeL (bp) at stage N if no bank run occurs. The right-hand side is his

expected utility when a bank run occurs. Everything else being equal, a bank run is more

costly in the economy with the high cuto¤ belief condition because evaluated at PeL (bp),
when the bank is forced to be liquidated by a run, its average payo¤ to a depositor is

lower than what a depositor can get if it is not liquidated. In what follows, we will see

that with the high (low) cuto¤ belief condition, the cuto¤ beliefs at stages before N are

above (below) bp.
19The non-monotonicity of the expected utility function in belief has been paid little attention in the

literature. In the literature, herding is usually treated as a partial equilibrium problem, in which the
cuto¤s are determined exogenously by the assumed value of parameters. An agent�s zero-one decision
either perfectly reveals the signal received or both decisions carry the same amount of noise. Given an
initial prior, only a few crucial probability levels (one and two signals above and below the initial prior) are
needed to show the equilibrium. However, in the banking setup with a one-side signal extraction problem,
the belief updated by observing a non-withdrawal is not completely o¤set by a withdrawal. There are 2n

number of possible posterior beliefs at stage n from ex-ante point of view. A general description of the
expected utility function on the full domain of beliefs thus becomes necessary.
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4.1 Case 1 �the high cuto¤ belief condition holds

De�ne a cuto¤ belief of Vn (p) as follows:

De�nition 3 We say epn is a cuto¤ belief of Vn (p) if there exist "1, "2 > 0 such that

Vn (p) � u1 for p 2 [epn; epn+ "1], and Vn (p) < u1 for p 2 [epn� "2; epn).
When the high cuto¤ belief condition holds, we have the following results.

Remark 1 Consider a contract that satis�es the high cuto¤ belief condition. Then the

following are true. Vn (p) is increasing in p for 1 � n � N . There exists a unique cuto¤
belief, epn; such that Vn (p) � u1 for p 2 [epn; 1], and Vn (p) = 1

c1
u1 for p 2 [0; epn). Finally,

we have epn > p̂ and epn is decreasing in n for 1 � n < N .20
Remark 1 states three facts when the high cuto¤ belief condition holds: (1) The

expected utility of the uninformed depositors is increasing in their beliefs. Consequently,

(2) there is a unique cuto¤ belief at each stage. (3) The cuto¤ belief is decreasing as time

goes by.

A bank run is costly under the high cuto¤ belief condition. To see this, consider a

pUN in the interval of [PeL (bp) ; bp). With such a belief, a bank run takes place at stage N .
The social welfare, measured by the aggregate expected utility, falls to 1

c1
u1. However,

under the high cuto¤ belief condition, if depositors do not withdraw, the social welfare

would actually be higher than that in the bank run. From the view of social welfare,

the bank run is undesirable. To an individual depositor, the bank run is also undesirable

because his expected payo¤ from early liquidation is lower than what he could get if

everyone, including himself, waited. Aware of the risk of having a costly bank run at the

next stage, the depositors must be more optimistic to wait for more information at stage

N � 1. Hence, the cuto¤ belief at stage N � 1 is higher than bp.21 Working backward,
20Proofs of remarks 1 and 2 are in the appendix.
21Note that by equations (5)� (6) and the high cuto¤ belief condition, we have

VN�1 (bp) = � (bp) f�u1 + (1� �) [pu2 + (1� p)u2]g+ (1� � (bp)) 1c1u1
< � (bp) f�u1 + (1� �) [PH (bp)u2 + (1� PH (bp))u2]g+

(1� � (bp))��u1 + (1� �) �PeL (bp)u2 + �1� PeL (bp)�u2�	
= u1:
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as the uncertainty of having a bank run gradually resolves, the cuto¤ beliefs decrease.

Depositors become more and more willing to wait.

Under the high cuto¤belief condition, depositors, worried about their loss in a possible

future bank run, tend to withdraw early even though their beliefs are still moderately

favorable. Because a bank run happens too soon, depositors never have a chance to

accumulate su¢ cient information at any level of belief to justify that a bank run can

mitigate future loss. Consequently, the negative e¤ect of a high belief disappears, and the

expected utility function becomes increasing in belief. As a result of the monotonicity,

there is a unique cuto¤ belief at each stage above which the uninformed depositors are

willing to wait and below which they will withdraw.

Example 1 An example of the expected utilities when the high cuto¤ belief condition

holds.

The utility function and the parameters in this example are as follows: u (c) =
(c+b)1�
�b1�


1�
 ; b = 0:001; 
 = 1:01: R = 1:5; R = 1; p0 = 0:9: q = 0:999: � = 0:01.

Let c1 = 1:04 and � = �c1 = 0:0104:

In this example, Vn
�
pUn
�
is increasing in pUn for every stage. epN = bp = 0:0978; epn =

0:4383 for n = N � 1; N � 2; :::; 1: Figure 1 shows Vn
�
pUn
�
, where n = N; N � 1; N � 2,

N � 100: In all �gures in this paper, a solid line represents Vn
�
pUn
�
and a dash line

represents u1:
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Figure 1: An example of the expected utilities when the

high cuto¤ belief condition holds.

With the high cuto¤ belief condition, the sequence of (ep0; ep1; :::; epN�1; bp; bp) comprises
the threshold beliefs above which the uninformed depositors wait and below which they

withdraw, whereas (bp; bp; :::bp; bp; bp) is the sequence of the threshold beliefs above which
the newly informed depositors wait and below which they withdraw. For all depositors

(p; p; :::; p; bp; bp) is the sequence of beliefs above which a herd of non-withdrawals occurs at
a stage.

Because epn is unique and is decreasing in n, we can calculate the number of updates
by PeL that are needed to trigger a bank run at stage n starting with p0. Let a positive
integer, Zn, solve

PZn�1eL (p0) � epn, and PZneL (p0) < epn:
If there have been Zn number of withdrawals up to stage n, a bank run will take place.

Because epn � bp, a non-withdrawal triggers a herd of non-withdrawals before the beliefs
of depositors fall below the cuto¤.
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4.2 Case 2 - the low cuto¤ belief condition holds

The high cuto¤belief condition is a su¢ cient condition for a bank run to be costly. Absent

such a condition, the expected utility function can exhibit non-monotonicity. We have

the following results from the low cuto¤ belief condition.

Remark 2 Consider a contract that satis�es the low cuto¤ belief condition. Then the

following are true: Vn (p) is not necessarily increasing in p. There can be multiple cuto¤

beliefs. Finally, the cuto¤ beliefs epn < p̂ for 1 � n < N .
If the low cuto¤ belief condition holds, when depositors withdraw with belief of PeL (bp)

at stage N , the aggregate expected utility is 1
c1
u1. If they wait, however, the expected

utility in the last period will be lower. Bank runs under such a circumstance serve as a

valuable option. An uninformed depositor with belief bp at stage N � 1 is willing to wait
because even if a bank run occurs at the next stage (his belief would be P~L (bp) then), the
loss is relatively small.22 By backward induction, the cuto¤ beliefs are lower than bp for
any stage before N .

Example 2 An example of the expected utilities when the low cuto¤ belief condition

holds.

The utility function and the parameters in this example are as follows: u (c) =
(c+b)1�
�b1�


1�
 ; b = 0:001; 
 = 1:01: R = 1:5; R = 0:8; p0 = 0:9: q = 0:9: � = 0:01.

Let c1 = 1:011; � = �c1 = 0:0101:

Figure 2 shows Vn (p), where n = N; N � 1; N � 2, N � 100: In this example,
VN�100 (p) exhibits non-monotonicity. The cuto¤s are unique at stages N , N � 1, N � 2,
and N�100. epN = bp = 0:3716; epN�1 = 0:2032; epN�2 = 0:1971; epN�100 = 0:1783: However,
the uniqueness of the cuto¤ belief is not guaranteed. We will see a case of multiple cuto¤

beliefs in example 3.

22Note that by equations (5) � (6) and the low cuto¤ belief condition, VN�1 (bp) =
� (bp) f�u1 + (1� �) [pu2 + (1� p)u2]g+ (1� � (bp)) 1c1u1 � u1.
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Figure 2: An example of the expected utilities when the low

cuto¤ belief condition holds.

Multiple cuto¤ beliefs result from payo¤ externality. If there is no payo¤ externality

(i.e., c1 = 1), the option to wait guarantees a payment of 1 in period 1, regardless of

other depositors�actions. Insured by such an option, an uninformed depositor prefers to

wait for more information until information is no longer available. The cuto¤ belief is

the lowest belief at which information can be revealed. (That is, if c1 = 1; the cuto¤

beliefs at stages before stage N are p.) If c1 > 1, the value of the option to withdraw falls

when other depositors exercise it. The uncertainty of payo¤ can encourage a depositor to

withdraw early with a relatively higher belief because he expects there will not be much

information about asset returns, but he can lose in a possible bank run. However, if he

has a lower belief and he expects more information to be revealed, he could prefer to wait

even though he is aware of his loss in a possible bank run. If he has an even lower belief,

the dim prospect of the portfolio return and the fear of loss in a bank run can outweigh

the incentive to wait.

Example 3 An example of multiple cuto¤ beliefs.

The utility function and the parameters in this example are as follows: u (c) =
(c+b)1�
�b1�


1�
 ; b = 0:01; 
 = 1:5: R = 2:07; R = 0; p0 = 0:9: q = 0:7: � = 0:25. Let
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c1 = 1:011 and � = �c1 = 0:2528:

Figure 3 shows the expected utility of an uninformed depositor at the stage of N � 6.
There are two cuto¤s at stage N � 6, 0:9546 and 0:9562. If the posterior belief at stage
N � 6 falls below 0:9546 or between 0:9551 and 0:9562, the uninformed depositors will
run on the bank.
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Figure 3: An example of multiple cuto¤

probabilities.

Multiple cuto¤ beliefs imply the following: Given the same contract, an economy that

starts with higher initial prior p0 can be more vulnerable to bank runs than the one with

lower initial prior. A bank run may be triggered by fewer withdrawals in an economy

with a higher initial probability of high asset returns than an economy with a lower one.

This is because an economy with higher initial prior is more likely to reach a herd of

non-withdrawals and thus has less chance to accumulate information.23 In example 3,

uninformed depositors with the belief of pUN�7 = 0:9727 (PeL (0:9727) = 0:9562) run on the
23A question associated with multiple cuto¤s is whether it is possible that a shorter queue can encourage

a bank run more than a longer queue given the same parameters that describe the economy but di¤erent
sequences of signals. The answer is no. To formalize the question, suppose Vn

�
p1
�
� u1, whereas

Vn
�
p2
�
< u1. Is it possible that p1 results from more observed withdrawals than p2? Suppose the

economy observes m withdrawals up to stage n to reach p1, whereas it takes m � 1 withdrawals up to
stage n to reach p2. We have p1 = PLPeL �p2�. By remark 2, we have p2 < bp, thereby p1 < PL (bp) = p.
By the de�nition of Vn (p) and because p1 < p; we have Vn

�
p1
�
= 1

c1u1. So we reach a contradiction.
Therefore, in the equilibrium, a longer queue implies that low asset return is more likely, and it encourages
people to run on the bank.
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bank if a withdrawal is observed at stage N � 6, whereas if their belief is pUN�7 = 0:9717

(PeL (0:9717) = 0:9547), they prefer to wait.
Multiple cuto¤ beliefs have implications for empirical tests of herding e¤ect. Runs

driven by herding e¤ect and runs driven by public information are observationally equiv-

alent. How do we test whether a run is driven by herding? In an economy with public

information about the portfolio returns, information availability does not depend on a

depositor�s belief. So the negative e¤ect of having a higher belief (i.e., less chance to infer

information from others�actions) that exists with herding disappears, and the likelihood

of having a bank run is monotone in the strength of the fundamentals. In contrast, if the

bank run is triggered by private information and herding e¤ects, then it is possible that

the likelihood of a bank run is not necessarily monotone in fundamentals. Everything

else being equal, if a relatively solid bank experiences a run whereas a weak one does not,

then it is due to the herding e¤ects. However, herding in other setups without payo¤

externality (for example, investment herding in the traditional literature) is not testable

using this method because the cuto¤ belief is unique in these environments, which implies

that the likelihood of a herd is monotone in the fundamentals.

Without the uniqueness of the cuto¤s and because a withdrawal conveys noisy in-

formation about the signal received and does not o¤set a non-withdrawal completely, it

is di¢ cult to describe in general the sequence of actions that triggers a herd. However,

two non-withdrawals in a row will de�nitely trigger a herd of non-withdrawals, and two

withdrawals in a row are necessary to trigger a herd of withdrawals.

4.3 Other Equilibria

The equilibrium proved in the proposition is not unique. In other equilibria, the newly

informed depositors�cuto¤ beliefs vary with stages. For example, there can be an equi-

librium in which the �rst informed depositor waits regardless of his private signal about

the asset returns. Other newly informed depositors follow the strategies described in

equation (1) : Because the �rst informed depositor�s action does not carry information,

beliefs of other depositors remain unchanged. The newly informed depositor becomes an
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already informed depositor at the second stage and updates his expected utility according

to equations (10)�(11). This equilibrium exists if the �rst informed depositor thinks that

a bank run is not likely to occur at the second stage, though his belief has been updated

by a negative signal (while other depositors�beliefs stay at p0). That is,

� (PL (p0))V2 (PH (p0)) + (1� � (PL (p0)))V2
�
PeL (p0)� � u1:

The �rst informed depositor will withdraw at a later stage when his expected utility falls

below u1. The other active depositors withdraw as well when they observe more than one

withdrawal at a stage.

All other equilibria are constructed in the same way. In these equilibria, some of the

newly informed depositors wait regardless of the signals about asset returns. Beliefs of

other depositors remain unchanged at these stages. If more than one withdrawal at a

stage is observed, a bank run starts.

4.4 Bank Contract

Given a contract and the equilibrium strategies, the ex-ante probability of having a herd-

ing run can be calculated by checking the probability that Vn will be lower than u1 at each

stage. The probability of having a herding run at a stage depends on the contract and

other parameters. The realization of a herding run relies on the random process in which

the signals are sent. Assuming depositors play the equilibrium strategies in the proposi-

tion, if a contract satis�es the high cuto¤ belief condition, the probability of herding runs

is determined by the probability of getting Zn number of consecutive withdrawals up to

stage n. If a contract satis�es the low cuto¤ belief condition, it is di¢ cult to write out the

general rules of calculating the probability of herding runs. In the appendix, I calculate

the probabilities of herding runs in a deposit game of N = 2 given that depositors play

the equilibrium strategies in the proposition. A more general case can be calculated in

the same way.

Because there exist multiple equilibria in the game, the choice of contract relies on
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the probability that a particular equilibrium occurs. The literature on bank runs employs

a sunspot variable as a randomizing device in selecting which equilibrium will occur.

Peck and Shell (2003) show that the ex-ante acceptable optimal contract can tolerate

panic-based bank runs if the probability of having a run is small enough because the

contract that admits runs also smooths consumption across depositors during normal

times. Similar logic applies here. The overall probability of bank runs24 is determined

by the probability of having a run outcome in each equilibrium and by the probability

that a particular equilibrium occurs. If the overall probability of runs is small, then the

optimal contract can tolerate bank runs. Furthermore, a herding run admitting contract

has gain and loss from imperfect information revelation: On one hand, a herding run

admitting contract allows depositors to reveal their private information about the bank�s

portfolio performance by their actions. A weak bank thus can be liquidated early to avoid

future loss. On the other hand, because the signals and the information extracted from

a depositor�s action are not perfect, a herding run can happen when bank�s asset returns

are high. In this situation, the herding run is misled.

5 Conclusion

This paper provides a model for studying detailed dynamics in bank runs. In an economy

with uncertainty in asset returns, a line in front of a bank carries information about

the bank�s portfolio status. The formation of a line outside a bank can persuade others

to join the line. In my model, a depositor makes withdrawal decisions according to his

observation of the withdrawal histories of the others as well as his private information

about the bank�s portfolio. Given a simple demand deposit contract, there is a perfect

Bayesian equilibrium in which depositors withdraw if too many withdrawals are observed

and wait otherwise.

Herding runs result from imperfect private information. Given the asset return struc-

ture in this paper, it is optimal to liquidate the production early if it turns out to be

24Note that a panic-based run is one of the equilbiria given c1 > 1, although I do not consider panic-
based runs in this paper.
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unsuccessful, and continue the production otherwise. The most desirable policy thus is

to enforce transparency of the bank�s portfolio return.

In this paper, the bank has no information advantage over the depositors, which is

not quite true in reality. In a more sophisticated model in which the bank receives signals

about asset returns, there arise problems such as how to eliminate the bank�s moral hazard

problem due to the information asymmetry between the bank and the depositors, and how

the bank reduces the probability of bank runs due to the misleading signals. These can

be extensions to the paper.

This paper discusses bank runs given a demand deposit contract. I do not seek a bank-

ing mechanism that eliminates herding runs. A demand deposit contract with sequential

service is widely used in the banking industry.25 It is worthwhile as a �rst attempt to

explain the queuing process given such contracts. Green and Lin (2000, 2003) provide a

model in which depositors make decisions whether to withdraw in sequence, although the

depositors do not observe the line or the actions by others. They show that there exists

an optimal banking contract that completely eliminates panic-based bank runs. A crucial

di¤erence between Green and Lin�s economy and mine is that there is no uncertainty in

asset returns in their economy. Their mechanism induces the depositors to report their

consumption types truthfully by their actions. In my model, however, there are two di-

mensions of uncertainties: consumption uncertainty and asset return uncertainty. The

withdrawal decision does not fully reveal the private information that a depositor has.

Thus, there remains information asymmetry between the bank and depositors. Even if

the bank provides a Green-Lin type of contract, it may not be able to eliminate herding

runs.26

However, allowing payments to be contingent on the public withdrawal history can

achieve higher social welfare (Wallace, 1988, 1990). Is there a more general banking

mechanism, for example, a mechanism that induces people to report truthfully about

25Calomiris and Kahn (1991) show that demand-deposit contract is e¢ cient if a bank�s moral hazard
problem potentially exists. Because bank runs are costly, depositors are motivated to monitor the bank
and the moral hazard problem will be reduced.
26In a di¤erent paper (Gu, 2008), I show that in a two-depositor, two-stage economy, the Green-Lin

type of mechanism does not eliminate herding runs.

31



their consumption types and signals about asset returns and thus reduces asymmetry in

information between the bank and the depositors, that achieves a better allocation? To

�nd a more e¢ cient mechanism in the economy with both asset return uncertainty and

consumption uncertainty is another extension of this paper, and more policy implications

can be derived from the �nding of such a mechanism.
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6 Appendix

6.1 Proofs of Lemmas

Lemma 1 Given a posterior belief of p at stage n; if Vn (p) � u1; then Vn+1 (PH (p)) � u1:

Proof. I will prove the lemma by discussing two cases. These two cases are called "high

cuto¤ belief condition" and "low cuto¤ belief condition", respectively, in section 3.3.

Case 1: (high cuto¤ belief condition) �u1 + (1� �)
�
PeL (bp)u2 + �1� PeL (bp)�u2� >

1

c1
u1:

Claim 1: With high cuto¤ belief condition, we have Vn (p) = 1
c1
u1 for p 2 [0; bp) and

Vn (p) � �u1 + (1� �) [pu2 + (1� p)u2] for p 2 [bp; 1]:
Claim 1 is true is true for Vn (p) for p on [0; p)[ [p; 1] by the de�nition of Vn (p). Prove

claim 1 on [p; p) by induction. It is true for VN (p) by de�nition. It is easy to prove for

VN�1 (p) by plugging VN (p) in VN�1 (p) and applying the high cuto¤ belief condition.

Suppose claim 1 is true for every stage up to stage n+ 1.

Consider Vn (p) on [p; bp). Check � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1 �PeL (p)� :
� (p)Vn+1 (PH (p)) + (1� � (p))Vn+1

�
PeL (p)�

� � (p) f�u1 + (1� �) [PH (p)u2 + (1� PH (p))u2]g+ (1� � (p))
1

c1
u1

< � (p̂) f�u1 + (1� �) [PH (p̂)u2 + (1� PH (p̂))u2]g+

(1� � (p̂))
�
�u1 + (1� �)

�
PeL (p̂)u2 + �1� PeL (p̂)�u2�	

= u1

where the �rst inequality results from the fact that claim 1 is supposed to be true up to

stage n+1, and the second inequality is by the monotonicity of �u1+(1� �) [pu2 + (1� p)u2]

in p and the high cuto¤ belief condition. Therefore, we have Vn (p) = 1
c1
u1.

Consider Vn (p) on [bp; p). If Vn (p) = 1
c1
u1; claim 1 is true by the high cuto¤ belief

condition and the monotonicity of �u1+(1� �) [pu2 + (1� p)u2] in p: If Vn (p) � u1 and
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PeL (p) 2 [bp; p), claim 1 is true because

Vn (p) = � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1
�
PeL (p)�

� � (p) f�u1 + (1� �) [PH (p)u2 + (1� PH (p))u2]g+

(1� � (p))
�
�u1 + (1� �)

�
PeL (p)u2 + �1� PeL (p)�u2�	

= �u1 + (1� �) [pu2 + (1� p)u2] ;

where the inequality comes from the facts that claim 1 is supposed to be true up to stage

n+ 1. Similarly, if Vn (p) � u1 and PeL (p) 2 [PeL (bp) ; bp); claim 1 is true because

Vn (p) = � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1
�
PeL (p)�

� � (p) f�u1 + (1� �) [PH (p)u2 + (1� PH (p))u2]g+
1

c1
u1

� � (p) f�u1 + (1� �) [PH (p)u2 + (1� PH (p))u2]g+

(1� � (p))
�
�u1 + (1� �)

�
PeL (p)u2 + �1� PeL (p)�u2�	

= �u1 + (1� �) [pu2 + (1� p)u2] ;

where the �rst inequality comes from the facts that claim 1 is supposed to be true up to

stage n + 1; the second inequality results from the high cuto¤ belief condition and the

monotonicity of �u1 + (1� �)
�
PeL (p)u2 + �1� PeL (p)�u2� in p.

By claim 1, if Vn (p) � u1; then we must have p � bp, thereby PH (p) > p: By the

de�nition of Vn, Vn+1 (PH (p)) = �u1 + (1� �) [pu2 + (1� p)u2] > u1:

Case 2: (low cuto¤ belief condition) �u1 + (1� �)
�
PeL (bp)u2 + �1� PeL (bp)�u2� �

1

c1
u1:

Claim 2: With low cuto¤ belief condition, we have Vn (p) � u1 for p 2 [bp; 1]:
By de�nition of Vn (p) ; claim 3 is true on [p; 1]. Check � (p)Vn+1 (PH (p)) + (1 �
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� (p))Vn+1
�
PeL (p)� on [bp; p):
� (p)Vn+1 (PH (p)) + (1� � (p))Vn+1

�
PeL (p)�

� � (p) f�u1 + (1� �) [PH (p)u2 + (1� PH (p))u2]g+ (1� � (p)) 1c1u1

� � (bp) f�u1 + (1� �) [pu2 + (1� p)u2]g+
(1� � (bp))��u1 + (1� �) �PeL (bp)u2 + �1� PeL (bp)�u2�	

= �u1 + (1� �) [bpu2 + (1� bp)u2] = u1
where the �rst inequality comes from the fact that Vn+1

�
PeL (p)� is bounded below by 1

c1
u1;

and the second inequality results from the low cuto¤belief condition and the monotonicity

of �u1 + (1� �) [pu2 + (1� p)u2] in p. Therefore, Vn (p) � u1 on [bp; p):
If Vn (p) � u1, by the de�nition of Vn (p) ; p must be in the interval of

�
p; 1
�
and PH (p)

is in the interval of [bp; 1]. By claim 2, Vn+1 (PH (p)) � u1.

In both cases, we have Vn+1 (PH (p)) � u1; if Vn (p) � u1:

Lemma 2 If pUn = p
A
n and Vn

�
pUn
�
� u1; then Wn

�
pAn
�
� u1:

Proof. Let pUn = p
A
n = p. I will prove the following claim.

Claim 3: If Vn (p) � u1, then Vn (p) can be written as

Vn (p) = �
h
�n (p)u1 + (1� �n (p)) 1c1u1

i
+ (1� �)Wn (p) ;

where �n (p) 2 [0; 1] :

It is obvious that claim 3 implies lemma 2.

Prove claim 3 by induction. Begin with stage N: It is easy to see that if VN (p) � u1;

we can write VN (p) = �u1 + (1� �)WN (p), where WN (p) = pu2 + (1� p)u2 � u1 and

�N = 1:

Suppose it is true for every stage up to stage n+ 1.

Prove for stage n. Let Vn (p) � u1: If p � p, it is easy to see that Vn (p) � u1 and

�n (p) = 1: If p < p, then Vn (p) = � (p)Vn+1 (PH (p))+(1�� (p))Vn+1
�
PeL (p)�. By lemma
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1, we have Vn+1 (PH (p)) � u1. Suppose Vn+1
�
PeL (p)� � u1. By the fact that claim 3 is

supposed to be true at stage n+ 1, we have Wn+1 (PH (p)) � u1 and Wn+1

�
PeL (p)� � u1.

So Wn (p) = � (p)Wn+1 (PH (p)) + (1� � (p))Wn+1

�
PeL (p)� � u1, and

Vn (p) = � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1
�
PeL (p)�

= � (p)
n
�
h
�n+1 (PH (p))u1 + (1� �n+1 (PH (p))) 1c1u1

i
+ (1� �)Wn+1 (PH (p))

o
+

+(1� � (p))
n
�
h
�n+1

�
PeL (p)�u1 + (1� �n+1 �PeL (p)�) 1c1u1i+ (1� �)Wn+1

�
PeL (p)�o

= �
h
�n (p)u1 + (1� �n (p)) 1c1u1

i
+ (1� �)Wn+1 (p) ;

where �n = � (p) �n+1 (PH (p)) + (1� � (p))�n+1
�
PeL (p)� � 1:

Suppose alternatively that Vn+1
�
PeL (p)� = 1

c1
u1, then we have Wn+1

�
PeL (p)� = 1

c1
u1

by the de�nition of Wn+1. We can write Vn (p) as

Vn (p) = � (p)Vn+1 (PH (p)) + (1� � (p))Vn+1
�
PeL (p)�

= � (p)Vn+1 (PH (p)) + (1� � (p)) 1c1u1

= � (p)

8<: �
h
�n+1 (pH (p))u1 + (1� �n+1 (pH (p))) 1c1u1

i
+

(1� �)Vn+1 (PH (p))

9=;+ (1� � (p)) 1c1u1
= �

h
�n (p)u1 + (1� �n (p)) 1c1u1

i
+ (1� �)

h
� (p)Wn+1 (PH (p)) + (1� � (p)) 1c1u1

i
= �

h
�n (p)u1 + (1� �n (p)) 1c1u1

i
+ (1� �)Vn (p) ;

where �n (p) = � (p) �n+1 (PH (p)) � 1:

Remark 1 Consider a contract that satis�es the high cuto¤ belief condition. Then the

following are true. Vn (p) is increasing in p for 1 � n � N . There exists a unique cuto¤

belief, epn; such that Vn (p) � u1 for p 2 [epn; 1], and Vn (p) = 1

c1
u1 for p 2 [0; epn). Finally,

we have epn > p̂ and epn is decreasing in n for 1 � n < N .
Proof. By the proof of Claim 1 in Lemma 1, we have established that Vn (p) � �u1 +

(1� �) [pu2 + (1� p)u2] for p on [bp; 1] and that epn > bp. In what follows, I will prove the
monotonicity of Vn (p) in p and the monotonicity of epn in n.
(1) Vn (p) is increasing in p on [0; 1]:
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By de�nition, Vn (p) = 1
c1
u1 for p 2 [0; p], where 1

c1
u1 is the lowest bound on Vn (p).

Only need to check the monotonicity for p on [p; 1]. Also note that Vn (p) = �u1 +

(1� �) [pu2 + (1� p)u2] is increasing in p for p 2 [p; 1]. Hence, we only need to prove

the monotonicity of Vn (p) on the interval of [p; p) and at p:

Prove by induction. By checking its de�nition, we see that VN (p) is increasing

in p. It is easy to see that VN�1 (p) is increasing in p on [p; p) by plugging VN (p)

into VN�1 (p) and applying the monotonicity of VN (p). Because limp!p_ VN�1 (p) =

limp!p_
�
� (p)VN (PH (p)) + (1� � (p))VN

�
PeL (p)�� = �u1+(1� �) [pu2 + (1� p)u2], VN�1 (p)

is increasing on the entire domain of [0; 1] :

Suppose it is true for every stage up to stage n+ 1:

Check Vn (p). For p on [p; p); by the monotonicity of Vn+1 (p) ; � (p)Vn+1 (PH (p))+(1�

� (p))Vn+1
�
PeL (p)� is increasing in p. Because Vn (p) � �u1 + (1� �) [pu2 + (1� p)u2]

for p 2 [bp; 1] by claim 1 in lemma 1, we have

lim
p!p_

Vn (p) = � (p)Vn+1 (PH (p))+(1�� (p))Vn+1
�
PeL (p)� � �u1+(1� �) [pu2 + (1� p)u2] :

Therefore, Vn (p) is increasing on the entire interval of [0; 1] :

Because Vn (p) is increasing on [0; 1], a unique cuto¤ probability epn exists.
(2) epn is decreasing in n:
Let P eH (p) be the inverse function of PeL (p). It is easy to prove that Vn (p) = �u1 +

(1� �) [pu2 + (1� p)u2] for p � min
n
PN�neH (bp) ; po by applying the de�nition of Vn (p)

recursively. Therefore, we have epn � minnPN�neH (bp) ; po :
Prove the monotonicity of epn by induction. By de�nition, epN = bp. By the high cuto¤

probability condition, bp < epN�1. Hence, we have bp < epN�1 � P eH (bp) < p:
Suppose it is true for every stage up to stage n + 1 that bp < epn+2 � epn+1 �

min
n
P
N�(n+1)eH (bp) ; po.
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Check stage n by plugging epn+1 into Vn (p). Check
� (epn+1)Vn+1 (PH (epn+1)) + (1� � (epn+1))Vn+1 �PeL (epn+1)�

= � (epn+1) f�u1 + (1� �) [PH (epn+1)u2 + (1� PH (epn+1))u2]g+ (1� � (epn+1)) 1c1u1:
(a1)

(a) If Vn+1 (epn+1) = u1, then Vn (epn+1) = u1 because epn+1 solves the same problem that
(a1) = u1. Hence, we have epn = epn+1 � minnPN�(n+1)eH (bp) ; po � minnPN�neH (bp) ; po :
(b) If Vn+1 (epn+1) > u1, then it must be true that epn+1 = minnPN�(n+1)eH (bp) ; po and

(a1) < u1:Otherwise, we could have found a cuto¤ that is less than epn+1 for stage n + 1.
Therefore, we have Vn (epn+1) < u1, and epn > epn+1 by the monotonicity of Vn (p) :
Remark 2 Consider a contract that satis�es the low cuto¤ belief condition. Then the

following are true: Vn (p) is not necessarily increasing in p. There can be multiple cuto¤

beliefs. Finally, the cuto¤ beliefs epn < p̂ for 1 � n < N .
Proof. The non-monotonicity of Vn (p) and the multiple cuto¤ beliefs are proved by

examples (see examples 2 and 3). By claim 2 in the proof of lemma 1, we have epn < p̂ for
1 � n < N .

7 Bank contract

In this section, I calculate examples of an optimal demand deposit contract, assuming

depositors only play the equilibrium strategies in the proposition. Note that given a

demand deposit contract, there are multiple equilibria in period 1. The literature uses a

sunspot variable as an equilibrium selection device. Here, I simply assume that only the

equilibrium described by (1)� (13) occurs in period 1. In this regard, the term "optimal

contract" has limited meaning.

In the static bank-runs model, a feasible contract should satisfy the participation

incentive compatibility constraint, which says that given all other patient depositors do

not withdraw the deposits, an individual patient depositor prefers to wait. In the dynamic

setup, a bank run can occur at any stage, but a feasible contract should at least give
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depositors the incentive to wait before anyone gets a signal. The participation incentive

compatibility constraint is

V0 (p0) � u1. (14)

The participation incentive compatibility constraint in the traditional Diamond-Dybvig

model is a special case here, with N = 0 and p0 = 1.

The bank chooses a contract to o¤er. There are two classes of contracts available to

the bank: herding-run-proof contracts and herding-run-admitting contracts. A herding-

run-proof contract guarantees that whichever signals are sent in period 1, the expected

utility of the uninformed depositors never falls below the threshold at any stage.

7.1 Herding-run-proof contracts

A herding-run-proof contract is in any one of the three cases in my model:

Case 1: A contract that provides c1 < 1. All patient depositors wait until stage N + 1

to make decisions according to their beliefs and consumption types. No information can

be inferred from the action of a newly informed depositor. The belief of an uninformed

depositor is p0 at all stages. The expected utility of an uninformed depositor at each stage

is

Vn (p0) = �u1 + (1� �) [p0u2 + (1� p0)u2]

for 0 � n � N .

Case 2: c1 � 1; and

PL (p0)u2 + (1� PL (p0))u2 � u1: (15)

That is, the initial belief is already above p. A herd of non-withdrawals has already begun

before anyone gets signals. The uninformed depositors never update their beliefs by the

observed actions.
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Case 3: c1 � 1, and

PL (p0)u2 + (1� PL (p0))u2 < u1; (16)

Vn
�
P neL (p0)� � u1 80 � n � N: (17)

That is, a newly informed depositor withdraws if a low signal is received. However,

because there are too few stages and/or because the probability of being impatient is high,

even though the beliefs are updated by PeL at every stage, the beliefs of the uninformed
depositors are still above the thresholds. Note that (17) implies that Vn

�
pUn
�
= �u1 +

(1� �)
�
pUnu2 +

�
1� pUn

�
u2
�
for 0 � n � N and for any pUn derived from p0, and that

(17) can be rewritten as

PNeL (p0) � bp: (170)

The best herding-run-proof contract solves

maxc1;� V0 (p0) = �u1 + (1� �) [p0u2 + (1� p0)u2]

s:t: c1 < 1; or

c1 � 1 and (14)� (15) ; or

c1 � 1, (14) ; and (16)� (17) :

7.2 Herding-run-admitting contracts

A herding-run-admitting contract admits a herd of withdrawals because Vn
�
pUn
�
< u1 at

at least one stage for some realization of pUn derived from p0. The ex-ante probability of

having a herding run given a contract can be calculated by checking the probability that

Vn
�
pUn
�
will be lower than u1 at each stage. The probability of having a herding run at

a stage depends on the contract and other parameters. The realization of a herding run

relies on the random process in which the signals are sent. If a contract satis�es the high

cuto¤ belief condition, the probability of herding runs is determined by the probability

of getting Zn number of consecutive withdrawals up to stage n. If a contract satis�es the

low cuto¤ belief condition, it is di¢ cult to write out the general rules of calculating the

probability of herding runs. In this section, a game of N = 2 is calculated. A more general
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case can be calculated in the same way. There are �ve cases for a herding-run-admitting

contract for N = 2, depending on the conditions with which a herd of withdrawals starts.

Case I: P~L (p0) � ~p1; PH (p0) � �p; P 2~L (p0) < p̂; PHP~L (p0) � p̂: A herd of non-withdrawals

begins if the �rst informed depositor waits. If both the �rst and the second informed

depositors withdraw, then a run occurs. If the �rst withdraws and the second waits, a

herd of non-withdrawals begins. The probability of bank runs is

�1 = (1� � (p0))
�
1� �

�
PeL (p0)�� .

Case II: P~L (p0) � ~p1; PH (p0) < �p, P 2~L (p0) < p̂; PHP~L (p0) � p̂: No herd occurs at

the �rst stage. If both the �rst and the second informed depositors withdraw, a herd of

withdrawals occurs. If the �rst informed depositor waits, the second depositor follows his

private signals, but the uninformed depositors do not withdraw regardless of the second

depositor�s action. The probability of bank runs is �1.

Case III: P~L (p0) < ~p1; PH (p0) � �p: A herd of withdrawals begins if the �rst informed

depositor withdraws. A herd of non-withdrawals begins if the �rst informed depositor

waits. The probability of herding runs is

�2 = 1� � (p0) :

Case IV: P~L (p0) < ~p1, PH (p0) < �p, PHP~L (p0) � p̂: A herd of withdrawals starts if

the �rst informed depositor withdraws. If the �rst informed depositor waits, the second

depositor follows his private signals. However, the uninformed depositors do not withdraw

regardless of the second depositor�s decision. The probability of herding runs is �2.

Case V: P~L (p0) < ~p1, PH (p0) < �p, PHP~L (p0) < p̂: A herd of withdrawals starts if

the �rst informed depositor withdraws. If the �rst informed depositor waits, the second

depositor still follows his private signals. The uninformed depositors wait if the second

depositor waits, and they withdraw if the second depositor withdraws. The probability

of herding runs is

�3 = 1� � (p0) + � (p0) (1� � (PH (p0))) :
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7.2.1 Conditions for herding-run-admitting contracts (N = 2)

The conditions for the �ve cases of herding-run-admitting contracts are listed in this

section. A herding-run-admitting contract should at least satisfy (14) and the following:

P 2eL (p0)u2 + �1� P 2eL (p0)�u2 � u1; and (18)

P 2H (p0)u2 +
�
1� P 2H (p0)

�
u2 > u1; (19)

which imply V2
�
P 2eL (p0)

�
� u1 and V2 (P 2H (p0)) > u1; respectively.

The feasible contract also implies V1 (PH (p0)) > u1 by lemma 1. I �rst list the con-

ditions for all of the possible outcomes after each newly informed depositor�s decision is

observed.

1. If the �rst informed depositor waits, a herd of non-withdrawals occurs.

PLPH (p0)u2 + (1� PLPH (p0))u2 = p0u2 + (1� p0)u2 � u1: (20)

2. If the �rst informed depositor withdraws, a herd of withdrawals occurs.

V1
�
PeL (p0)� < u1:

3. If the �rst informed depositor withdraws, a herd of withdrawals does not occur.

The second depositor follows the signal as PLPeL (p0)u2 + �1� PLPeL (p0)�u2 < u1;
guaranteed by (18). The uninformed depositors withdraw if the second depositor

withdraws (by (18)), and they wait if the second depositor waits.

V1
�
PeL (p0)� � u1

V2
�
PHPeL (p0)� = �u1 + (1� �)

�
PHPeL (p0)u2 + �1� PHPeL (p0)�u2� � u1(21)

4. If the �rst informed depositor waits, a herd of non-withdrawals does not occur.

The second depositor follows the signal. The uninformed depositors withdraw if the
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second depositor withdraws, and they wait if the second depositor waits.

p0u2 + (1� p0)u2 < u1; and (22)

�u1 + (1� �)
�
PeLPH (p0)u2 + �1� PeLPH (p0)�u2� < u1: (23)

5. If the �rst informed depositor waits, a herd of non-withdrawals does not occur. The

second depositor follows the signal. The uninformed depositors wait regardless of

the second depositor�s decision, that is, (21)� (22) :

The combinations of the above �ve outcomes constitute descriptions of equilibrium

outcomes given the contract.

Case I: Combine 1 and 3.

The probability of bank runs is �1 = (1� � (p0))
�
1� �

�
PeL (p0)��.

Equations (18) � (20) are necessarily required for the outcome. The participation

incentive constraint is

V0 (p0) = � (p0)V1 (PH (p0)) + (1� � (p0))V1
�
PeL (p0)� � u1 (24)

where

V1
�
PeL (p0)� = �

�
PeL (p0)� ��u1 + (1� �) �PHPeL (p0)u2 + �1� PHPeL (p0)�u2�	+�

1� �
�
PeL (p0)�� 1

c1
u1 (25)

� u1;

and

V1 (PH (p0)) = �u1 + (1� �) [PH (p0)u2 + (1� PH (p0))u2] � u1: (26)

(26) is guaranteed by (20) :
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The ex-ante expected utility maximization problem is

max
c1;�

V0 (p0)

s:t: c1 � 1; (18)� (20) ; (24)� (26) :

Case II: Combine 3 and 5.

The probability of bank runs is �1. The conditions for the outcome are (18) �

(19) ; (21) � (22), and (24) � (26) ; where (26) is guaranteed by (21) in this case. The

ex-ante expected utility maximization problem is

max
c1;�

V0 (p0)

s:t: c1 � 1; (18)� (19) ; (21)� (22) ; and (24)� (26) :

Case III: Combine 1 and 2.

The probability of bank runs is �2 = 1 � � (p0) : The conditions for the outcome are

(18)� (20) ; and (24). In addition, the participation incentive constraint requires

V0 (p0) = � (p0)V1 (PH (p0)) + (1� � (p0))V1
�
PeL (p0)� � u1;

where

V1 (PH (p0)) = �u1 + (1� �) [PH (p0)u2 + (1� PH (p0))u2] � u1 (27)

is guaranteed by (20) ; and V1
�
PeL (p0)� = 1

c1
u1 implies

�
�
PeL (p0)� ��u1 + (1� �) �PHPeL (p0)u2 + �1� PHPeL (p0)�u2�	+�1� � �PeL (p0)�� 1

c1
u1 < u1:

(28)

The ex-ante expected utility maximization problem is

max
c1;�

V0 (p0)

s:t:c1 � 1; (18)� (20) ; (24) ; and (27)� (28) :
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Case IV: Combine 2 and 5.

The probability of bank runs is �2. The conditions for the outcome are (18) � (19) ;

(21)� (22) ; (24) and (27)� (28) ; where (27) is guaranteed by (21) : The ex-ante expected

utility maximization problem is

max
c1;�

V0 (p0)

s:t:c1 � 1; (18)� (19) ; (21)� (22) ; (24) ; (27)� (28) :

Case V: Combine 2 and 4.

The probability of bank runs is �3 = 1� � (p0) + � (p0) (1� � (PH (p0))) : The condi-

tions for the outcome are (14) ; (18)� (19), and (22)� (24). The participation incentive

constraint requires:

V0 (p0) = � (p0)V1 (PH (p0)) + (1� � (p0))V1
�
PeL (p0)� � u1

where

V1 (PH (p0)) = � (PH (p0))
�
�v1 + (1� �)

�
P 2H (p0)u2 +

�
1� P 2H (p0)

�
u2
�	
+ (29)

(1� � (PH (p0))) 1c1u1

� u1;

and V1
�
PeL (p0)� = 1

c1
u1; guaranteed by (23) :

The ex-ante expected utility maximization problem is

max
c1;�

V0 (p0)

s:t:c1 � 1, (18)� (19) ; (22)� (24) ; (29) :

A competitive bank chooses the optimal contract from the classes of herding-run-proof

and herding-run-admitting contracts. There are three factors concerning which type of

contract to o¤er. First, because a herding-run-proof contract is associated with lower
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c1, whereas a herding-run-admitting contract provides higher c1, a herding-run-admitting

contract helps smooth consumptions across consumption types. This is a positive side

of providing a herding-run-admitting contract. Second, a herding-run-admitting contract

allows depositors to reveal their private information about the bank�s portfolio perfor-

mance by their actions. It is again a positive side of a herding-run-admitting contract.

Third, because the signals and the information extracted from a depositor�s action are not

perfect, a bank run can happen when bank�s asset returns are high. This is a negative side

of a herding-run-admitting contract. Which contract to provide depends on the overall

e¤ects of the three.

The choice among herding-run-admitting contracts also depends on several factors.

First, a higher c1 helps smooth consumptions, but it is usually associated with higher

probability of herding runs and lower social welfare in bank runs. The second factor is

unique to a sequential-move game. The optimal herding-run-admitting contract should

allow as much information as possible to be sensed publicly before any type of herd begins.

The �rst N depositors can be treated as experiments. The result of each experiment can

only be read before herds begin. A careful choice of contract should prolong the e¤ective

experiment process as much as possible. High c1 and low c2 can encourage people to run

on the bank, and a bank run can happen too soon.

I compute two examples to illustrate that in some economies a run-admitting contract

is optimal, whereas in other economies a herding-run-proof contract is optimal. I compute

the best contract in each of the three herding-run-proof cases and the �ve herding-run-

admitting cases. The optimal contract is the best of the best.

In an economy without information about asset returns, the bank chooses a contract

to maximize �u1 + (1 � �) [p0u2 + (1� p0)u2], subject to the incentive compatibility

constraint p0u2 + (1� p0)u2 � u1. If herding runs are undesirable under the optimal

demand deposit contract, the bank may want to use a �curtain� to prevent depositors

from seeing each others�actions. From the examples below, we will see that information

inferred from others�actions can improve ex-ante welfare.

An individual depositor�s expected utility in autarky is u (1). If the optimal banking
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contract is accepted ex ante, V0 (p0) must be at least equal to u (1).

7.3 Computed Examples

Parameters and functions used in examples 4 and 5 are u (c) = (c+b)1�
�b1�

1�
 ; b = 0:001;


 = 1:01: R = 1:5; R = 0:2; p0 = 0:99: q = 0:99:

Example 4 � = 0:01.

The optimal contract in each case is listed in Table 1. A herding-run-admitting con-

tract is optimal in this example, mainly because it induces depositors to reveal the signals

they receive. This is also the reason the economy that allows for herding runs can achieve

higher ex-ante welfare than the economy with no information about asset returns.

Table 1: An example of an optimal contract that permits herding runs
� c1 � V0 (p0)

Autarky 0 1:0000 1 7:1529
Banking economy with no info 0 1:0001 0:0100 7:5332
Best herding-run-proof contract in case 1 0 1:0000 0:0100 7:5332
Best herding-run-proof contract in case 2 0 1:0000 1:0000 7:1529
Best herding-run-proof contract in case 3 0 1:0000 1:0000 7:1529
Best herding-run-admitting contract in case I 0:0102 1:0000 0:0100 7:5487�

Best herding-run-admitting contract in case II 0:0102 1:0000 1:0000 7:1529
Best herding-run-admitting contract in case III 0:0296 1:0876 0:0109 7:5263
Best herding-run-admitting contract in case IV 0:0296 1:0000 1:0000 7:1529
Best herding-run-admitting contract in case V 0:0490 1:4868 0:0149 7:4310

Example 5 � = 0:2.

The optimal contract in each case is listed in Table 2. In this example, a herding-

run-proof contract is optimal. Under a herding-run-admitting contract, the probability of

bank runs increases in � because the probability of observing withdrawals is raised. An

informed depositor�s withdrawal action carries noisier information about the signals he

receives, and bank runs happen too often when the asset returns are high. In addition,

because there are more impatient depositors in the economy, the payments to depositors

in period 1 decrease due to the resource constraint, which leaves more room for using a

herding-run-proof contract.
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Table 2: An example of an optimal contract that is run-proof
� c1 � V0 (p0)

Autarky 0 1 1 7:1529
Banking economy with no info 0 1:0028 0:2006 7:4602
Best herding-run-proof contract in case 1 0 1:0000 0:2000 7:4602�

Best herding-run-proof contract in case 2 0 1:0000 1:0000 7:1529
Best herding-run-proof contract in case 3 0 1:0028 0:2006 7:4602�

Best herding-run-admitting contract in case I 0:0527 1:0213 0:2043 7:4523
Best herding-run-admitting contract in case II 0:0527 1:0000 1:0000 7:1529
Best herding-run-admitting contract in case III 0:2158 1:1047 0:2209 7:2785
Best herding-run-admitting contract in case IV 0:2158 1:0000 1:0000 7:1529
Best herding-run-admitting contract in case V 0:3790 1:0000 1:0000 7:1529

7.4 An Example of an Economy with Two Depositors

In this section, I present the model in a two-depositor, two-stage version, which is the

simplest setting that allows for herding runs. Depositors� endowment, preference and

storage technology, bank�s technology and the demand deposit contract, and the arrival

of the information about the asset returns and consumption are the same as in the main

text. Depositor 1 receives signals about asset returns and about his consumption type at

stage 1. He does not have the chance to revise his decision after observing the action of

the other. But he can delay his decision until stage 2. Depositor 2 receives information

about his consumption type at stage 2, but no information about productivity. If both

depositors are active at stage 2, they will make decisions simultaneously. For convenience,

the signal about asset returns is assumed to be perfect (q = 1). Because there are only

two depositors, there is no need for depositor 2 to make a decision before he receives

signals. Both depositors have equal probability to be depositor 1 ex ante.

The bank o¤ers the demand deposit contract (c1; �), where � is the amount in storage.

If c1 > 1, the depositor who withdraws second will not receive the full amount of c1: So let

c1 (1) and c2 (2) denote the payment received by depositors who withdraw �rst and second

in period 1, respectively. Let c2 (x1 + x2; R) denote the payment in period 2 conditional

on the total withdrawals in period 1 and the realization of asset returns.

To comply with the assumption in section 3, given c1 < 1, I let depositor 1 delay his

decision until stage 2 and that depositor 2 cannot obtain any information from depositor
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1�s action at stage 1. Depositors play a simultaneous-move game if both are active at

stage 2. I �rst illustrate the equilibrium given c1 � 1, then the one given c1 < 1:

7.4.1 Equilibrium given c1 � 1

In this simplest setup, there is a unique perfect Bayesian equilibrium in the post-deposit

game, given any contract that provides c1 � 1. That is,

1. If c1 = 1 and � = 2, depositors 1 and 2 withdraw if and only if they are impatient.

Depositor 1�s belief is updated by the signal received. Depositor 2�s belief does not

change. This contract results in the same welfare level as in autarky.

2. If c1 > 1 or � 6= 2, depositor 1 withdraws if he is impatient and/or a low signal

is received and does not withdraw otherwise. Depositor 2 has the updated belief

PeL (p0) (PH (p0) = 1) if depositor 1 withdraws (does not withdraw). Depositor 2

withdraws if he is impatient and/or his posterior belief at stage 2 is below the cuto¤

belief bp2 (x1) ; where bp2 (x1) solves
bp2 (x1)u �c2 �x1; R��+ (1� bp2 (x1))u (c2 (x1; R)) = u (c1 (x1 + 1)) : (30)

The left-hand side of (30) is the expected payo¤ for depositor 2 if he waits until pe-

riod 2, and the right-hand side is the utility if he withdraws immediately. Note thatbp2 is contingent on x1, because depositor 2�s expected payo¤ varies with depositor
1�s action.

A herding run occurs in case 2 if depositor 1 withdraws at stage 1 and depositor 2

withdraws at stage 2 regardless of his consumption type.

Given c1 � 1, an acceptable contract must satisfy the following condition: If the

productivity is known to be high, both depositors are willing to wait ex ante. That is,

�2 (0:5u (c1 (1)) + 0:5u (c1 (2))) + (1� �)2 u
�
c2
�
0; R

��
+ (31)

+2� (1� �)
�
0:5u (c1 (1)) + u

�
0:5c2

�
1; R

���
� u (1) :
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Note that if a high signal is received, depositor 1 have the incentive to wait if he can

convey the high signal to depositor 2 because

�u
�
c2
�
1; R

��
+ (1� �)u

�
c2
�
0; R

��
� u (1)

by (31).

7.4.2 Equilibrium given c1 < 1

When c1 < 1 is provided (c1 (1) = c1 (2) = c1), depositor 1 withdraws at stage 1 if

he is impatient. If depositor 1 has withdrawn, depositor 2 withdraws at stage 2 if

p0u
�
c2
�
1; R

��
+ (1� p0)u (c2 (1; R)) < u (c1) and/or he is impatient, and he does not

otherwise. If depositor 1 is still active (i.e. he is a patient type), depositors 1 and 2 play

a simultaneous-move game at stage 2, in which depositor 1 knows the portfolio status but

does not know depositor 2�s type, whereas depositor 2 does not know the portfolio status

but knows depositor 1 is patient. There exist Bayesian Nash equilibria. There are four

possible equilibrium outcomes, depending on the parameters and contract.

1. �u (c2 (1; R))+(1� �)u (c2 (0; R)) < u (c1) and p0u
�
c2
�
0; R

��
+(1� p0)u (c2 (1; R)) �

u (c1): Depositor 1 withdraws if he has received a low signal, and does not otherwise.

Depositor 2 withdraws if he is impatient and does not withdraw otherwise.

2. u (c2 (1; R)) < u (c1) and p0u
�
c2
�
0; R

��
+ (1� p0)u (c2 (1; R)) < u (c1): Deposi-

tor 1 withdraws if he has received a low signal and does not withdraw otherwise.

Depositor 2 withdraws.

3. u (c2 (1; R)) � u (c1) and p0u
�
c2
�
0; R

��
+ (1� p0)u (c2 (0; R)) < u (c1): Depositor

1 does not withdraw. Depositor 2 withdraws.

4. �u (c2 (1; R))+(1� �)u (c2 (0; R)) � u (c1) and p0u
�
c2
�
0; R

��
+(1� p0)u (c2 (0; R)) �

u (c1): Depositor 1 does not withdraw. Depositor 2 withdraws if he is impatient and

does not withdraw otherwise.
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Note that there exists multiple equilibria given some parameter values. Also note that

depositor 1 always has incentive to wait if he has received a high signal as c1 < 1 and

c2
�
1; R

�
> 1.

7.4.3 A Numeric Example

The following utility function and parameters are used in the example: u (c) = (c+b)1�
�b1�

1�
 ;

b = 0:001; 
 = 1:01; R = 1:25; R = 0:95; p0 = 0:95; q = 1; � = 0:05:

Table 3: Optimal contract - two-depositor, two-stage
c1 � w0 (p0)

Best contract that provides c1 > 1 or � 6= 2 1 0 7:3439�

Contract that provides c1 = 1 and � = 2 (Autarky) 1 2 7:1529
Best contract that provides c1 < 1 1:0000 0 7:3439

The optimal contract in this example provides c1 = 1 and � = 0. Because the liquidity

demand is small (� is small) and the asset returns are likely to be high, the bank invests

all resources in the productive assets. Given the optimal contract, depositor 1 withdraws

at stage 1 if and only if a low signal is received or he is impatient, depositor 2 withdraws at

stage 2 if depositor 1 has withdrawn at stage 1 or he is impatient, and does not otherwise.

When asset returns are low, depositor 1�s withdrawal forces the bank to liquidate all

its assets. Depositor 2 bene�ts from early liquidation because it mitigates future losses,

although he himself has no private information about asset returns. The best contract in

the category of c1 < 1 provides c1 very close to 1, and the bank invests all resources in

the asset. Given such a contract, there exists a unique equilibrium in which depositor 1

withdraws at stage 1 if and only if he is impatient, and he withdraws at stage 2 if and

only if he has received a low signal; depositor 2 does not withdraw at stage 1, and he

withdraws at stage 2 if and only if he is impatient.
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